精英家教网 > 高中数学 > 题目详情
12.定义在R上的偶函数f(x)满足f(x+1)=-f(x)且在[5,6]上是增函数,α,β是锐角三角形的两个内角,则(  )
A.f(sinα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(cosα)>f(cosβ)

分析 根据已知条件能够得到f(x)是周期为2的周期函数,且在[0,1]上单调递减,再根据α,β为锐角三角形的两个锐角即可得到1>sin>cosβ>0,从而根据f(x)在[0,1]上的单调性即可得出f(sinα)<f(cosβ).

解答 解:由f(x+1)=-f(x)得,f(x+2)=f(x);
∴f(x)是以2为周期的周期函数;
∵f(x)是R上的偶函数,且在[5,6]上是增函数;
∴f(x)在[-6,-5]上为减函数;
∴f(x)在[0,1]上为减函数;
∵α,β是锐角三角形的两个锐角;
∴α+β>$\frac{π}{2}$;
∴α>$\frac{π}{2}$-β,α,$\frac{π}{2}$-β∈(0,$\frac{π}{2}$)
∴sinα>sin($\frac{π}{2}$-β)=cosβ且sinα,cosβ∈(0,1);
∴f(sinα)<f(cosβ).
故选:C.

点评 考查周期函数的定义,偶函数的定义,以及偶函数在对称区间上的单调性特点,知道周期函数经过k个周期后,该函数单调性不变,锐角三角形两内角和的范围,正弦函数的单调性,函数单调性定义的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知矩形ABCD中,AB=2,AD=5,E,F分别在AD,BC上,且AE=1,BF=3,沿EF将四边形AEFB折成四边形A′EFB′,使点B′在平面CDEF上的射影H在直线DE上,且EH=1.
(1)求证:A′D∥平面B′FC;
(2)求C到平面B′HF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+ax-3a2lnx,(a>0).
(1)求f(x)的单调区间;
(2)求f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a,b,c分别为角A,B,C的对边,且cos2B+cosB+cos(C-A)=1,则(  )
A.a,b,c成等比数列B.a,b,c成等差数列C.a,c,b成等比数列D.a,c,b成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax3-$\frac{3}{2}$x2+1(x∈R),其中a>0.
(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若对?x∈[-1,$\frac{1}{2}$],不等式f(x)<a2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=f(x)是定义在R上的奇函数,对?x∈R都有f(x-3)=f(x-1)成立,当,x∈(0,1]且x1≠x2时,有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,给出下列命题:
(1)f(x)在[-2,2]上有5个零点
(2)点(2016,0)是函数y=f(x)的一个对称中心
(3)直线x=2016是函数y=f(x)图象的一条对称轴
(4)f(9.2)<f(π)
则正确的是(1)(2)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an},其中a1=2,an-an-1=2n-1(n≥2,n∈N+),则{an}的通项公式an=2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:
①在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}$>0,则∠A为锐角,
②函数y=x3在R上既是奇函数又是增函数,
③若$\overrightarrow a=(λ,2),\overrightarrow b=(-3,-5),且\overrightarrow a与\overrightarrow b的夹角为钝角,则λ的取值范围是λ>-\frac{10}{3}$
④函数y=f(x)的图象与直线x=a至多有一个交点,
⑤若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列;
其中正确命题的序号是①②④.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,外接圆半径为R,则$r=\frac{2S}{a+b+c}$,类比得四面体S-ABCD的四个侧面的面积分别为S1,S2,S3,S4,四面体S-ABCD的体积为V,内切球的半径为R,则R=$R=\frac{3V}{{{S_1}+{S_2}+{S_3}+{S_4}}}$.

查看答案和解析>>

同步练习册答案