精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2+ax-3a2lnx,(a>0).
(1)求f(x)的单调区间;
(2)求f(x)在[1,e]上的最小值.

分析 (1)求出函数的导数,解关于导函数的方程,求出函数的单调区间即可;(2)通过讨论a的范围,求出函数的最小值即可.

解答 解:(1)f′(x)=$\frac{(2x+3a)(x-a)}{x}$,(x>0),
令f′(x)=0,解得:x1=a,x2=-$\frac{3a}{2}$(舍),
x,f′(x),f(x)的变化如下:

x(0,a)a(a,+∞)
f′(x)-0+
f(x)递减极小值递增
∴f(x)的递增区间是(a,+∞),递减区间是(0,a);
(2)由(1)得:当0<a≤1时,f(x)在[1,e]递增,f(x)min=f(1)=1+a,
1<a<e时,f(x)在[1,a]递减,在[a,e]递增,f(x)min=f(a)=2a2-3a2lna,
a≥e时,f(x)在[1,e]递减,f(x)min=f(e)=e2+ae-3a2

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=2sin($\frac{π}{2}$+x)cosx-$\sqrt{3}$(cosx-sinx)2
(1)求函数f(x)的单调递减区间;
(2)将f(x)的图象向右平移$\frac{π}{12}$个单位,再将图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍,得到函数y=g(x),求g($\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某汽车公司为了考查某4S店的服务态度,对到店维修保养的客户进行回访调查,每个用户在到此店维修或保养后可以对该店进行打分,最高分为10分.上个月公司对该4S店的100位到店维修保养的客户进行了调查,将打分的客户按所打分值分成以下几组:
第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到频率分布直方图如图所示.
(I)求所打分值在[6,10]的客户的人数:
(II)该公司在第二、三组客户中按分层抽样的方法抽取6名客户进行深入调查,之后将从这6人中随机抽取2人进行物质奖励,求得到奖励的人来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知角α的终边经过点(sin15°,-cos15°),则cos2α的值为(  )
A.$\frac{1}{2}+\frac{{\sqrt{3}}}{4}$B.$\frac{1}{2}-\frac{{\sqrt{3}}}{4}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i是虚数单位,计算i+i2+i3+…+i2015=(  )
A.-iB.-1-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知(1+2i)2=a+bi(a,b∈R,i是虚数单位),则a+b=(  )
A.1B.-1C.-3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}1-|{x+1}|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}$,若函数h(x)=f(x)-x-a在区间[-2,4]内有3个零点,则实数a的取值范围是(-2,0)∪{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的偶函数f(x)满足f(x+1)=-f(x)且在[5,6]上是增函数,α,β是锐角三角形的两个内角,则(  )
A.f(sinα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知ω>0,函数f(x)=sin(ωx+$\frac{π}{4}$)在($\frac{π}{2}$,π)上单调递增,则ω的取值范围是(0,$\frac{1}{4}$].

查看答案和解析>>

同步练习册答案