精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}1-|{x+1}|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}$,若函数h(x)=f(x)-x-a在区间[-2,4]内有3个零点,则实数a的取值范围是(-2,0)∪{1}.

分析 作出函数y=f(x)和y=x+a的图象.利用两个图象的交点个数问题确定a的取值范围.

解答 解:若0≤x≤2,则-2≤x-2≤0,
∴f(x)=2f(x-2)=2(1-|x-2+1|)=2-2|x-1|,0≤x≤2.
若2≤x≤4,则0≤x-2≤2,
∴f(x)=2f(x-2)=2(2-2|x-2-1|)=4-4|x-3|,2≤x≤4.
∴f(1)=2,f(2)=0,f(3)=4.
设y=f(x)和y=x+a,则方程f(x)=x+a在区间[-2,4]内有3个不等实根,、
等价为函数y=f(x)和y=x+a在区间[-2,4]内有3个不同的零点.
作出函数f(x)和y=x+a的图象,如图:

当直线经过点A(2,0)时,两个图象有2个交点,此时直线y=x+a为y=x-2,
当直线经过点O(0,0)时,两个图象有4个交点,此时直线y=x+a为y=x,
当直线经过点B(3,4)和C(1,2)时,两个图象有3个交点,此时直线y=x+a为y=x+1,
∴要使方程f(x)=x+a在区间[-2,4]内有3个不等实根,
则a=1或-2<a<0.
故答案为:(-2,0)∪{1}.

点评 本题主要考查方程根的个数的应用,将方程转化为函数,利用数形结合是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知集合M满足{1,2,3}⊆M⊆{1,2,3,4,5},则集合M的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=sinAsinC.
(1)若a=$\sqrt{2}$b,求cosB;
(2)若B=60°,且a=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+ax-3a2lnx,(a>0).
(1)求f(x)的单调区间;
(2)求f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个函数:①y=3-x;②y=$\frac{1}{x}$;③y=x2+2x-10;④y=$\left\{\begin{array}{l}-x{\;}^{\;}(x≤0)\\-\frac{1}{x}{\;}^{\;}(x>0)\end{array}$.其中定义域与值域相同的函数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a,b,c分别为角A,B,C的对边,且cos2B+cosB+cos(C-A)=1,则(  )
A.a,b,c成等比数列B.a,b,c成等差数列C.a,c,b成等比数列D.a,c,b成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax3-$\frac{3}{2}$x2+1(x∈R),其中a>0.
(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若对?x∈[-1,$\frac{1}{2}$],不等式f(x)<a2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an},其中a1=2,an-an-1=2n-1(n≥2,n∈N+),则{an}的通项公式an=2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知锐角三角形的边长分别为1,3,x,则x的取值范围为(2$\sqrt{2}$,$\sqrt{10}$).

查看答案和解析>>

同步练习册答案