精英家教网 > 高中数学 > 题目详情
7.不等式$\frac{lnx}{x}$-x+c≤0对?x∈(0,+∞)恒成立,则c的取值范围是(-∞,1].

分析 不等式$\frac{lnx}{x}$-x+c≤0对?x∈(0,+∞)恒成立,转化求解函数的最值,由此能求出实数a的取值范围.

解答 解:∵不等式$\frac{lnx}{x}$-x+c≤0对?x∈(0,+∞)恒成立,
又当x>0时,c≤x-$\frac{lnx}{x}$,令g(x)=x-$\frac{lnx}{x}$,
则g′(x)=1-$\frac{1-lnx}{{x}^{2}}$,令1-$\frac{1-lnx}{{x}^{2}}$=0,解得x=1,x∈(0,1),函数是减函数,x∈(1,+∞)函数是增函数,
x=1时,函数取得最小值:1.
∴实数c的取值范围是(-∞,1].
故答案为:(-∞,1].

点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意均值不等式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.曲线y=2sinx(0≤x≤π)与直线y=1围成的封闭图形的面积为(  )
A.$2\sqrt{3}-\frac{4π}{3}$B.$2\sqrt{3}-\frac{2π}{3}$C.$2\sqrt{3}+\frac{4π}{3}$D.$2\sqrt{3}+\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,c∈R,那么下列命题中正确的是(  )
A.若a>b,则ac2>bc2B.若$\frac{a}{c}$>$\frac{b}{c}$,则a>b
C.若a3>b3且ab<0,则$\frac{1}{a}$>$\frac{1}{b}$D.若a2>b2且ab>0,则$\frac{1}{a}$>$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(2k,3),$\overrightarrow{b}$=( 5,1),且 $\overrightarrow{a}$∥$\overrightarrow{b}$,则实数k=(  )
A.$-\frac{9}{2}$B.$\frac{15}{2}$C.$-\frac{3}{10}$D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设数列{an}的前n项和是Sn,满足$n({{S_{n+1}}+{S_{n-1}}-2{S_n}})=2+{a_n}({n≥2,n∈{N^*}})$,a1=1,a2=2,则当n≥2时,Sn=n2-n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.球O为正方体ABCD-A1B1C1D1的内切球,AB=2,E,F分别为棱AD,CC1的中点,则直线EF被球O截得的线段长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\vec a=({{x^2},2x})$,$\vec b=({1,tanθ})$,函数$f(x)=\vec a•\vec b-1$,$x∈[-1,\sqrt{3}]$,其中$θ∈({-\frac{π}{2},\frac{π}{2}})$.
(1)当$θ=-\frac{π}{6}$时,求函数f(x)的最大值和最小值;
(2)求θ的取值范围,使y=f(x)在区间$[-1,\sqrt{3}]$上是单调的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)=ax2+bx+c(a<0)不等式f(x)>-2x的解集为(1,3)
(Ⅰ)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(Ⅱ)若f(x)的最大值为正数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列结论正确的是(  )
A.单位向量都相等B.对于任意$\overrightarrow{a}$,$\overrightarrow{b}$,必有|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|
C.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则一定存在实数λ,使$\overrightarrow{a}$=λ$\overrightarrow{b}$D.若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=0或$\overrightarrow{b}$=0

查看答案和解析>>

同步练习册答案