精英家教网 > 高中数学 > 题目详情
17.曲线y=2sinx(0≤x≤π)与直线y=1围成的封闭图形的面积为(  )
A.$2\sqrt{3}-\frac{4π}{3}$B.$2\sqrt{3}-\frac{2π}{3}$C.$2\sqrt{3}+\frac{4π}{3}$D.$2\sqrt{3}+\frac{2π}{3}$

分析 先确定积分区间,再确定被积函数,进而求定积分,即可求得曲线y=2sinx(0≤x≤π)与直线y=1围成的封闭图形的面积.

解答 解:由y=2sinx(0≤x≤π),直线y=1.
令2sinx=1,
可得:x=$\frac{π}{6}$或$\frac{5π}{6}$.
∴曲线y=2sinx(0≤x≤π)与直线y=1交于点A($\frac{π}{6}$,1)和B($\frac{5π}{6}$,1).
因此,围成的封闭图形的面积S=${∫}_{\frac{π}{6}}^{\frac{5π}{6}}(2sinx-1)dx$=-2cosx-x${|}_{\frac{π}{6}}^{\frac{5π}{6}}$=2$\sqrt{3}-$$\frac{2π}{3}$.
故选:B.

点评 本题考查利用定积分求面积,解题的关键是确定积分区间与被积函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$在$\vec a$上的投影为4,在x轴上的投影为2,则$\vec b$为(  )
A.(2,14)B.$({2,-\frac{2}{7}})$C.(2,4)D.$({-2,\frac{2}{7}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,内角A,B,C的对边分别为a,b,c.若asinBcosC+csinBcosA=$\frac{1}{2}$b且a>b,则B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“0<x<5”是“-2<x<6”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)根据频率分布直方图,估计这50名学生百米测试成绩的中位数和平均数(精确到0.1).
(Ⅱ)若从第一、五组中随机取出三名学生成绩,设取自第一组的个数为ξ,求ξ的分布列,期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=x2+mx+1(m∈R),g(x)=ex
(1)当x∈[0,2]时,F(x)=f(x)-g(x)为增函数,求实数m的取值范围;
(2)设函数$G(x)=\frac{f(x)}{g(x)},H(x)=-\frac{1}{4}x+\frac{5}{4}$,若不等式G(x)≤H(x)对x∈[0,5]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知($\sqrt{x}$-ax)5的展开式中含x${\;}^{\frac{7}{2}}$的项的系数是90,则a=3或-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(1+a)lnx+$\frac{2(1-a){x}^{2}+1}{x}$(a∈R).
(1)当a>1时,求函数f(x)的单调区间;
(2)若对任意a∈(2,3)及x1,x2∈[1,3],恒有(m+ln3)(1-a)-2ln3>f(x1)-f(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式$\frac{lnx}{x}$-x+c≤0对?x∈(0,+∞)恒成立,则c的取值范围是(-∞,1].

查看答案和解析>>

同步练习册答案