12£®Ä³°à50ÃûѧÉúÔÚÒ»´Î°ÙÃײâÊÔÖУ¬³É¼¨È«²¿½éÓÚ13ÃëÓë18ÃëÖ®¼ä£¬½«²âÊÔ½á¹û°´ÈçÏ·½Ê½·Ö³ÉÎå×飺µÚÒ»×é[13£¬14£©£¬µÚ¶þ×é[14£¬15£©£¬¡­£¬µÚÎå×é[17£¬18]£¬ÈçͼÊǰ´ÉÏÊö·Ö×é·½·¨µÃµ½µÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨¢ñ£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬¹À¼ÆÕâ50ÃûѧÉú°ÙÃײâÊԳɼ¨µÄÖÐλÊýºÍƽ¾ùÊý£¨¾«È·µ½0.1£©£®
£¨¢ò£©Èô´ÓµÚÒ»¡¢Îå×éÖÐËæ»úÈ¡³öÈýÃûѧÉú³É¼¨£¬ÉèÈ¡×ÔµÚÒ»×éµÄ¸öÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁУ¬ÆÚÍû¼°·½²î£®

·ÖÎö £¨I£©ÀûÓüÓȨƽ¾ùÊý¹«Ê½¼ÆË㣻
£¨II£©¸ù¾Ý³¬¼¸ºÎ·Ö²¼¸ÅÂʹ«Ê½¼ÆËã¸ÅÂÊ£¬µÃ³ö·Ö²¼ÁУ¬ÔÙ¼ÆËã¾ùÖµºÍ·½²î£®

½â´ð ½â£º£¨¢ñ£©$\overline x=13.5¡Á0.06+14.5¡Á0.16$+15.5¡Á0.38+16.5¡Á0.32+17.5¡Á0.08=0.81+2.32+5.89+5.28+1.4=15.7£¬
ÖÐλÊýΪ£º$15+\frac{0.5-0.06-0.16}{0.38}$¡Ö15.7£®
£¨¢ò£©µÚÒ»×éÈËÊýΪ0.06¡Á1¡Á50=3ÈË£¬µÚÎå×éÈËÊýΪ0.08¡Á1¡Á50=4ÈË£®
¡à¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£®
$P£¨{¦Î=0}£©=\frac{C_4^3}{C_7^3}=\frac{4}{35}$£¬$P£¨{¦Î=1}£©=\frac{C_3^1C_4^2}{C_7^3}=\frac{18}{35}$£¬$P£¨{¦Î=2}£©=\frac{C_3^2C_4^1}{C_7^3}=\frac{12}{35}$£¬$P£¨{¦Î=3}£©=\frac{C_3^3}{C_7^3}=\frac{1}{35}$£¬
ËùÒԦεķֲ¼ÁÐΪ£º

 ¦Î 0 1 2 3
 P $\frac{4}{35}$ $\frac{18}{35}$ $\frac{12}{35}$ $\frac{1}{35}$
¡à$E¦Î=0¡Á\frac{4}{35}+1¡Á\frac{18}{35}+2¡Á\frac{12}{35}$$+3¡Á\frac{1}{35}=\frac{45}{35}=\frac{9}{7}$£®
$D¦Î={£¨{0-\frac{9}{7}}£©^2}¡Á\frac{4}{35}+{£¨{1-\frac{9}{7}}£©^2}¡Á\frac{18}{35}$$+{£¨{2-\frac{9}{7}}£©^2}¡Á\frac{12}{35}+{£¨{3-\frac{9}{7}}£©^2}¡Á\frac{1}{35}$=$\frac{840}{{{7^2}¡Á35}}=\frac{24}{49}$£®

µãÆÀ ±¾Ì⿼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬ÆµÂÊ·Ö²¼Ö±·½Í¼£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª½Ç¦Á£¬¦ÂÂú×ã$\frac{tan¦Á}{tan¦Â}=2$£¬Èô$sin£¨{¦Á+¦Â}£©=\frac{1}{3}$£¬Ôòsin£¨¦Á-¦Â£©µÄֵΪ$\frac{1}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx£¨x¡ÊR£©£®
£¨1£©Èôº¯Êýf£¨x£©µÄͼÏóÔÚµãx=3´¦µÄÇÐÏßÓëÖ±Ïßx+24y+1=0´¹Ö±£¬º¯Êýf£¨x£©ÔÚx=1´¦È¡µÃ¼«Öµ£¬Çóº¯Êýf£¨x£©µÄ½âÎöʽ£®²¢È·¶¨º¯ÊýµÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©Èôa=1£¬ÇÒº¯Êýf£¨x£©ÔÚ[-1£¬1]Éϼõº¯Êý£¬ÇóbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®²»µÈʽ×é$\left\{\begin{array}{l}{x-y-2¡Ü0}\\{x+y+3¡Ü0}\\{1¡Ü|x+3|¡Ü2}\end{array}\right.$±íʾµÄÆ½ÃæÇøÓòµÄÃæ»ýΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èôf£¨x£©=x4-3x3+1£¬Ôòf¡ä£¨x£©=£¨¡¡¡¡£©
A£®4x3-6x2B£®4x3-9x2C£®4x3+6x2D£®4x3-6x2+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÇúÏßy=2sinx£¨0¡Üx¡Ü¦Ð£©ÓëÖ±Ïßy=1Χ³ÉµÄ·â±ÕͼÐεÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$2\sqrt{3}-\frac{4¦Ð}{3}$B£®$2\sqrt{3}-\frac{2¦Ð}{3}$C£®$2\sqrt{3}+\frac{4¦Ð}{3}$D£®$2\sqrt{3}+\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=2x2+ex-$\frac{1}{3}$£¨x£¼0£©Óëg£¨x£©=2x2+ln£¨x+a£©µÄͼÏóÉÏ´æÔÚ¹ØÓÚyÖá¶Ô³ÆµÄµã£¬ÔòaµÄȡֵ·¶Î§ÊÇa£¼e${\;}^{\frac{2}{3}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®½«º¯Êýf£¨x£©=$\sqrt{3}$sin2x-cos2xµÄͼÏóÏòÓÒÆ½ÒÆm¸öµ¥Î»£¨m£¾0£©£¬ÈôËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýΪżº¯Êý£¬ÔòmµÄ×îСֵÊÇ$\frac{¦Ð}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÉèÊýÁÐ{an}µÄǰnÏîºÍÊÇSn£¬Âú×ã$n£¨{{S_{n+1}}+{S_{n-1}}-2{S_n}}£©=2+{a_n}£¨{n¡Ý2£¬n¡Ê{N^*}}£©$£¬a1=1£¬a2=2£¬Ôòµ±n¡Ý2ʱ£¬Sn=n2-n+1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸