精英家教网 > 高中数学 > 题目详情
20.不等式组$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y+3≤0}\\{1≤|x+3|≤2}\end{array}\right.$表示的平面区域的面积为2.

分析 由不等式组作出平面区域为梯形及其内部,联立方程组求出B,C,D,A的坐标,然后求解即可.

解答 解:由不等式组$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y+3≤0}\\{1≤|x+3|≤2}\end{array}\right.$作平面区域如图,
由$\left\{\begin{array}{l}{x=-2}\\{x+y+3=0}\end{array}\right.$解得A(-2,-1),由$\left\{\begin{array}{l}{x=-1}\\{x-y-2=0}\end{array}\right.$解得C(-1,-3),
由$\left\{\begin{array}{l}{x=-2}\\{x-y-2=0}\end{array}\right.$解得B(-2,-4).由$\left\{\begin{array}{l}{x=-1}\\{x+y+3=0}\end{array}\right.$D(-1,-2)
∴|AB|=3.|CD|=1,梯形的高为1,
不等式组$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y+3≤0}\\{1≤|x+3|≤2}\end{array}\right.$表示的平面区域的面积为:$\frac{3+1}{2}×1$=2.
故答案为:2.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若k∈N,k≥4,则将(k-3)(k-2)(k-1)k用排列数符号$A_n^m$表示为${A}_{k}^{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点M(1,1)到抛物线y=ax2的准线的距离是2,则a=$\frac{1}{4}$或-$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,内角A,B,C的对边分别为a,b,c.若asinBcosC+csinBcosA=$\frac{1}{2}$b且a>b,则B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.两直线x+y-5=0和直x-y=0的交点坐标为$(\frac{5}{2},\frac{5}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“0<x<5”是“-2<x<6”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)根据频率分布直方图,估计这50名学生百米测试成绩的中位数和平均数(精确到0.1).
(Ⅱ)若从第一、五组中随机取出三名学生成绩,设取自第一组的个数为ξ,求ξ的分布列,期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知($\sqrt{x}$-ax)5的展开式中含x${\;}^{\frac{7}{2}}$的项的系数是90,则a=3或-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列四个命题:
①直线l平行于平面α内的无数直线,则l∥α
②若直线l在平面α外,则l∥α
③若直线l∥b,直线b?α,则l∥α
④若直线l∥b,直线b?α,那么直线l就平行平面α内的无数条直线
以上说法正确的是④.(将正确说法的序号填在横线上)

查看答案和解析>>

同步练习册答案