精英家教网 > 高中数学 > 题目详情
5.已知角α,β满足$\frac{tanα}{tanβ}=2$,若$sin({α+β})=\frac{1}{3}$,则sin(α-β)的值为$\frac{1}{9}$.

分析 由题意利用同角三角函数的基本关系求得sinαcosβ=2cosαsinβ,再根据已知及两角和的正弦函数公式可求cosαsinβ的值,可求sinαcosβ的值,利用两角差的正弦公式求得sin(α-β)的值.

解答 解:∵$\frac{tanα}{tanβ}=2$,即sinαcosβ=2cosαsinβ.
∵$sin({α+β})=\frac{1}{3}$=sinαcosβ+cosαsinβ,可得:3cosαsinβ=$\frac{1}{3}$,
∴cosαsinβ=$\frac{1}{9}$,可求sinαcosβ=$\frac{1}{3}$-$\frac{1}{9}$=$\frac{2}{9}$,
则sin(α-β)=sinαcosβ-cosαsinβ=$\frac{2}{9}$-$\frac{1}{9}$=$\frac{1}{9}$.
故答案为:$\frac{1}{9}$.

点评 本题主要考查同角三角函数的基本关系,两角差的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.用一个平面去截一个几何体,得到的截面是平面四边形,这个几何体不可能是(  )
A.三棱锥B.棱柱C.四棱台D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=1+lnx的导函数y′=$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若k∈N,k≥4,则将(k-3)(k-2)(k-1)k用排列数符号$A_n^m$表示为${A}_{k}^{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点A(-1,-2),B(3,8),若$\overrightarrow{AB}=2\overrightarrow{AC}$,则点C的坐标为(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$在$\vec a$上的投影为4,在x轴上的投影为2,则$\vec b$为(  )
A.(2,14)B.$({2,-\frac{2}{7}})$C.(2,4)D.$({-2,\frac{2}{7}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若$\frac{sinα-cosα}{sinα+cosα}$=2,则tan(α-$\frac{π}{4}$)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点M(1,1)到抛物线y=ax2的准线的距离是2,则a=$\frac{1}{4}$或-$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)根据频率分布直方图,估计这50名学生百米测试成绩的中位数和平均数(精确到0.1).
(Ⅱ)若从第一、五组中随机取出三名学生成绩,设取自第一组的个数为ξ,求ξ的分布列,期望及方差.

查看答案和解析>>

同步练习册答案