精英家教网 > 高中数学 > 题目详情
12.球O为正方体ABCD-A1B1C1D1的内切球,AB=2,E,F分别为棱AD,CC1的中点,则直线EF被球O截得的线段长为$\sqrt{2}$.

分析 求出球心到直线EF的距离,再利用垂径定理计算弦长.

解答 解:连结OE,OF,取EF的中点M,连结OM.
∵O是正方体的中心,E,F是AD,CC1的中点,
∴OE=OF=$\sqrt{2}$,∴OM⊥EF.
又EF=$\sqrt{4+1+1}$=$\sqrt{6}$,∴OM=$\sqrt{2-\frac{3}{2}}$=$\frac{\sqrt{2}}{2}$.
∵球O的半径为r=1,
∴EF被球O截得弦长为2$\sqrt{{r}^{2}-O{M}^{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(x)=x2+mx+1(m∈R),g(x)=ex
(1)当x∈[0,2]时,F(x)=f(x)-g(x)为增函数,求实数m的取值范围;
(2)设函数$G(x)=\frac{f(x)}{g(x)},H(x)=-\frac{1}{4}x+\frac{5}{4}$,若不等式G(x)≤H(x)对x∈[0,5]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC中,AB=$\sqrt{3}$,AC=1且B=30°,则△ABC的面积等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$ 或$\sqrt{3}$D.$\frac{\sqrt{3}}{4}$ 或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:${lg^2}2+{lg^2}5+2lg2•lg5+{log_8}9•{log_{27}}32+{π^{{{log}_π}2}}+{(3\frac{3}{8})^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式$\frac{lnx}{x}$-x+c≤0对?x∈(0,+∞)恒成立,则c的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.sin(-870°)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\frac{sina}{sina+cosa}$=$\frac{1}{2}$,且向量$\overrightarrow{AB}$=(tanα,1),$\overrightarrow{BC}$=(2,tanα),则$\overrightarrow{AC}$等于(  )
A.(-2,3)B.(1,2)C.(4,3)D.(3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.$f(x)={log_2}\frac{x}{2}{log_{\sqrt{2}}}\frac{{\sqrt{x}}}{2}$,其中x满足${3^{2x-4}}-\frac{10}{3}×{3^{x-1}}+9≤0$.
(1)求实数x的取值范围;
(2)求f(x)的最大值及取得最大值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)的导函数为f′(x),则f′(x)>0是f(x)递增的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

同步练习册答案