精英家教网 > 高中数学 > 题目详情
2.函数f(x)的导函数为f′(x),则f′(x)>0是f(x)递增的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

分析 f′(x)>0,可得函数f(x)递增;反之不成立.例如函数f(x)=x3,可得f′(x)=3x2≥0,函数f(x)在R上单调递增.即可判断出结论.

解答 解:f′(x)>0,可得函数f(x)递增;反之不成立.
例如函数f(x)=x3,可得f′(x)=3x2≥0,函数f(x)在R上单调递增.
可得:f′(x)>0是f(x)递增的充分不必要条件.
故选:A.

点评 本题考查了利用导数研究函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.球O为正方体ABCD-A1B1C1D1的内切球,AB=2,E,F分别为棱AD,CC1的中点,则直线EF被球O截得的线段长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若随机变量ξ的分布列为
ξ01
Pmn
其中m∈(0,1),则下列结果中正确的是(  )
A.E(ξ)=m,D(ξ)=n3B.E(ξ)=n,D(ξ)=n2C.E(ξ)=1-m,D(ξ)=m-m2D.E(ξ)=1-m,D(ξ)=m2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知圆M过点C(1,-1),D(-1,1),且圆心M在x+y-2=0上.求圆M的方程;
(2)圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列结论正确的是(  )
A.单位向量都相等B.对于任意$\overrightarrow{a}$,$\overrightarrow{b}$,必有|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|
C.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则一定存在实数λ,使$\overrightarrow{a}$=λ$\overrightarrow{b}$D.若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=0或$\overrightarrow{b}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某数学老师在分析上期末考试成绩时发现:本班的数学成绩(x)与总成绩(y)之间满足线性回归方程:$\hat y=1.8x+332$,则下列说法中正确的是(  )
A.某同学数学成绩好,则总成绩一定也好
B.若该班的数学平均分为110分,则总成绩平均分一定为530分
C.若某同学的数学成绩为110分,则他的总成绩一定为530分
D.本次统计中的相关系数为1.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,
在DM上取一点G,过G和AP作平面交平面BDM于GH.
(Ⅰ)求证:AP∥平面BDM;
(Ⅱ)若G为DM中点,求证:$\frac{GH}{PA}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某产品的广告费用x万元与销售额y万元的统计数据如下表
广告费用x(万元)2345
销售额y(万元)26m4954
根据上表可得回归方程$\widehat{y}$=9x+10.5,则m为(  )
A.36B.37C.38D.39

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a1>a2>a3>1,则使得${a_i}{x^2}+(a_i^2+1)x+{a_i}>0$(i=1,2,3)都成立的x的取值范围是(  )
A.$(0,\frac{1}{a_3})$B.$(-∞,-{a_3})∪(-\frac{1}{a_3},+∞)$
C.$(-∞,-{a_3}]∪(-\frac{1}{a_3},+∞)$D.$(-∞,-\frac{1}{a_3})∪(-{a_3},+∞)$

查看答案和解析>>

同步练习册答案