分析 (1)把指数不等式化为关于3x的一元二次不等式,因式分解后求得3x的范围,进一步得到x的取值范围;
(2)由(1)中求得的x的范围得到log2x的范围,把函数f(x)利用对数的运算性质化简整理,得到f(x)═$lo{{g}_{2}}^{2}x-3lo{g}_{2}x+2$,再利用配方法求最大值.
解答 解:(1)由${3^{2x-4}}-\frac{10}{3}×{3^{x-1}}+9≤0$,得32x-90×3x+729≤0.
∴(3x-9)(3x-81)≤0,解得9≤3x≤81,
∴2≤x≤4.
∴实数x的取值范围是[2,4];
(2)∵x∈[2,4],∴log2x∈[1,2],
∴$f(x)={log_2}\frac{x}{2}{log_{\sqrt{2}}}\frac{{\sqrt{x}}}{2}$=(log2x-1)(log2x-2)
=$lo{{g}_{2}}^{2}x-3lo{g}_{2}x+2$=$(lo{g}_{2}x-\frac{3}{2})^{2}-\frac{1}{4}$.
∴当log2x=1或log2x=2,即x=2或4时,函数f(x)有最大值为$\frac{1}{4}-\frac{1}{4}=0$.
点评 本题考查函数的最值及其几何意义,训练了指数不等式的解法,考查对数的运算性质及配方法求函数的最值,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$ | B. | $\frac{5}{4}$或5 | C. | 5 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 学生 | A1 | A2 | A3 | A4 | A5 |
| 数学(x分) | 89 | 91 | 93 | 95 | 97 |
| 物理(y分) | 87 | 89 | t | 92 | 93 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| ξ | 0 | 1 |
| P | m | n |
| A. | E(ξ)=m,D(ξ)=n3 | B. | E(ξ)=n,D(ξ)=n2 | C. | E(ξ)=1-m,D(ξ)=m-m2 | D. | E(ξ)=1-m,D(ξ)=m2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 广告费用x(万元) | 2 | 3 | 4 | 5 |
| 销售额y(万元) | 26 | m | 49 | 54 |
| A. | 36 | B. | 37 | C. | 38 | D. | 39 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com