精英家教网 > 高中数学 > 题目详情
9.在平行四边形ABCD 中,$∠A=\frac{π}{3}$,边AB、AD长分别为2、1,若E、F分别是边BC、CD上的点,且满足$\frac{{|{\overrightarrow{CE}}|}}{{|{\overrightarrow{CB}}|}}=\frac{{|{\overrightarrow{DF}}|}}{{|{\overrightarrow{DC}}|}}$,则$\overrightarrow{AE}•\overrightarrow{AF}$的取值范围是[2,5].

分析 设CE=x,则DF=2x,用$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AE},\overrightarrow{AF}$,得出$\overrightarrow{AE}•\overrightarrow{AF}$关于x的函数,求出此函数的值域即可.

解答 解:设CE=x(0≤x≤1),则DF=2x,
∴$\overrightarrow{AE}$=$\overrightarrow{AB}+$(1-x)$\overrightarrow{AD}$,$\overrightarrow{AF}$=x$\overrightarrow{AB}$+$\overrightarrow{AD}$,
∵${\overrightarrow{AB}}^{2}$=4,${\overrightarrow{AD}}^{2}$=1,$\overrightarrow{AB}•\overrightarrow{AD}$=2×1×cos$\frac{π}{3}$=1.
∴$\overrightarrow{AE}•\overrightarrow{AF}$=x${\overrightarrow{AB}}^{2}$+(x-x2+1)$\overrightarrow{AB}•\overrightarrow{AD}$+(1-x)${\overrightarrow{AD}}^{2}$=4x+(x-x2+1)+(1-x)=-x2+4x+2,
令f(x)=-x2+4x+2=-(x-2)2+6,
则f(x)在[0,1]上单调递增,
∵f(0)=2,f(1)=5,
∴2≤f(x)≤5.
故答案为:[2,5].

点评 本题考查了平面向量的数量积运算,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为X.
(1)求游戏结束时小华在第2个台阶的概率;
(2)求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:${lg^2}2+{lg^2}5+2lg2•lg5+{log_8}9•{log_{27}}32+{π^{{{log}_π}2}}+{(3\frac{3}{8})^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.sin(-870°)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\frac{sina}{sina+cosa}$=$\frac{1}{2}$,且向量$\overrightarrow{AB}$=(tanα,1),$\overrightarrow{BC}$=(2,tanα),则$\overrightarrow{AC}$等于(  )
A.(-2,3)B.(1,2)C.(4,3)D.(3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$).
(1)求点C的直角坐标;
(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.$f(x)={log_2}\frac{x}{2}{log_{\sqrt{2}}}\frac{{\sqrt{x}}}{2}$,其中x满足${3^{2x-4}}-\frac{10}{3}×{3^{x-1}}+9≤0$.
(1)求实数x的取值范围;
(2)求f(x)的最大值及取得最大值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A(4sin θ,6cos θ),B(-4cos θ,6sin θ),当θ为一切实数时,线段AB的中点轨迹为(  )
A.直线B.C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x=15°,则sin4x-cos4x的值为(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案