精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$=(2k,3),$\overrightarrow{b}$=( 5,1),且 $\overrightarrow{a}$∥$\overrightarrow{b}$,则实数k=(  )
A.$-\frac{9}{2}$B.$\frac{15}{2}$C.$-\frac{3}{10}$D.-5

分析 利用向量共线定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow{b}$,∴2k-15=0,解得k=$\frac{15}{2}$.
故选:B.

点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.“0<x<5”是“-2<x<6”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(1+a)lnx+$\frac{2(1-a){x}^{2}+1}{x}$(a∈R).
(1)当a>1时,求函数f(x)的单调区间;
(2)若对任意a∈(2,3)及x1,x2∈[1,3],恒有(m+ln3)(1-a)-2ln3>f(x1)-f(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC中,AB=$\sqrt{3}$,AC=1且B=30°,则△ABC的面积等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$ 或$\sqrt{3}$D.$\frac{\sqrt{3}}{4}$ 或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列四个命题:
①直线l平行于平面α内的无数直线,则l∥α
②若直线l在平面α外,则l∥α
③若直线l∥b,直线b?α,则l∥α
④若直线l∥b,直线b?α,那么直线l就平行平面α内的无数条直线
以上说法正确的是④.(将正确说法的序号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:${lg^2}2+{lg^2}5+2lg2•lg5+{log_8}9•{log_{27}}32+{π^{{{log}_π}2}}+{(3\frac{3}{8})^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式$\frac{lnx}{x}$-x+c≤0对?x∈(0,+∞)恒成立,则c的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\frac{sina}{sina+cosa}$=$\frac{1}{2}$,且向量$\overrightarrow{AB}$=(tanα,1),$\overrightarrow{BC}$=(2,tanα),则$\overrightarrow{AC}$等于(  )
A.(-2,3)B.(1,2)C.(4,3)D.(3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若y轴上存在点A(0,2),使得$\overrightarrow{AM}•\overrightarrow{AF}=0$,则p的值为(  )
A.2或8B.2C.8D.4或8

查看答案和解析>>

同步练习册答案