精英家教网 > 高中数学 > 题目详情
5.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若y轴上存在点A(0,2),使得$\overrightarrow{AM}•\overrightarrow{AF}=0$,则p的值为(  )
A.2或8B.2C.8D.4或8

分析 求出抛物线的焦点和准线方程,设M($\frac{{t}^{2}}{2p}$,t),运用抛物线的定义和向量的加减坐标运算和数量积的坐标表示,解方程即可得到所求值.

解答 解:抛物线C:y2=2px(p>0)的焦点为F($\frac{p}{2}$,0),
准线方程为x=-$\frac{p}{2}$,
设M($\frac{{t}^{2}}{2p}$,t),由|MF|=5,
抛物线的定义可得,$\frac{{t}^{2}}{2p}$+$\frac{p}{2}$=5,①
又y轴上存在点A(0,2),使得$\overrightarrow{AM}•\overrightarrow{AF}=0$,
即有(($\frac{{t}^{2}}{2p}$,t-2)•($\frac{p}{2}$,-2)=0,
即有$\frac{{t}^{2}}{2p}$•$\frac{p}{2}$-2(t-2)=0,
解得t=4.
代入①,即为p2-10p+16=0,
解得p=2或8.
故选:A.

点评 本题考查抛物线的定义、方程和性质,考查向量数量积的坐标表示,以及方程思想,正确运用定义解题是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(2k,3),$\overrightarrow{b}$=( 5,1),且 $\overrightarrow{a}$∥$\overrightarrow{b}$,则实数k=(  )
A.$-\frac{9}{2}$B.$\frac{15}{2}$C.$-\frac{3}{10}$D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)=ax2+bx+c(a<0)不等式f(x)>-2x的解集为(1,3)
(Ⅰ)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(Ⅱ)若f(x)的最大值为正数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若随机变量ξ的分布列为
ξ01
Pmn
其中m∈(0,1),则下列结果中正确的是(  )
A.E(ξ)=m,D(ξ)=n3B.E(ξ)=n,D(ξ)=n2C.E(ξ)=1-m,D(ξ)=m-m2D.E(ξ)=1-m,D(ξ)=m2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a>0,b>0,若3a与3b的等比中项是$\sqrt{3}$,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知圆M过点C(1,-1),D(-1,1),且圆心M在x+y-2=0上.求圆M的方程;
(2)圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列结论正确的是(  )
A.单位向量都相等B.对于任意$\overrightarrow{a}$,$\overrightarrow{b}$,必有|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|
C.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则一定存在实数λ,使$\overrightarrow{a}$=λ$\overrightarrow{b}$D.若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=0或$\overrightarrow{b}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,
在DM上取一点G,过G和AP作平面交平面BDM于GH.
(Ⅰ)求证:AP∥平面BDM;
(Ⅱ)若G为DM中点,求证:$\frac{GH}{PA}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.当x>1>y时,有x2-2xy+y2≥m[xy-(x+y)+1]恒成立,则实数m的取值范围为[-4,+∞).

查看答案和解析>>

同步练习册答案