精英家教网 > 高中数学 > 题目详情
9.等差数列{an}的首项为a,公差为1,数列{bn}满足bn=$\frac{{a}_{n}}{{a}_{n}+1}$.若对任意n∈N*,bn≤b6,则实数a的取值范围是(  )
A.(-8,-6)B.(-7,-6)C.(-6,-5)D.(6,7)

分析 由等差数列的通项公式,求得数列{an}的通项,进而求得bn,再由函数的性质求得.

解答 解:∵{an}是首项为a,公差为1的等差数列,
∴an=n+a-1.
∴bn=$\frac{{a}_{n}}{{a}_{n}+1}$=$1-\frac{1}{n+a}$.
又∵对任意的n∈N*,都有bn≤b6成立,可知$\frac{1}{6+a}≤\frac{1}{n+a}$,
则必有7+a-1<0且8+a-1>0,
∴-7<a<-6;
故选:B.

点评 本题主要考查等差数列的通项公式,用函数处理数列思想的方法求解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在扇形AOB中,∠AOB=2,且弦AB=2,则扇形AOB的面积为(  )
A.$\frac{2}{sin2}$B.$\frac{1}{si{n}^{2}1}$C.$\frac{1}{2si{n}^{2}2}$D.2sin1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“?t∈R,A∩B=∅”是真命题,则实数a的取值范围是(  )
A.(-∞,0)∪($\frac{4}{3}$,+∞)B.(0,$\frac{4}{3}$]C.[0,$\frac{4}{3}$]D.(-∞,0]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知{an}是等差数列,a1=-26,a8+a13=5,当{an}的前n项和Sn取最小值时,n等于(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.关于x的不等式x2-ax+b<0的解集为{x|2<x<3}.
(Ⅰ)求a+b;
(Ⅱ)若不等式-x2+bx+c>0的解集为空集,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>1,$x={log_a}\sqrt{2}+\frac{1}{2}{log_a}3$,$y=\frac{1}{2}{log_a}5$,$z={log_a}\sqrt{21}-{log_a}\sqrt{3}$,则(  )
A.x>y>zB.z>y>xC.y>x>zD.z>x>y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$f(x)={log_{0.5}}({x^2}-mx-m)$.
(1)若函数f(x)的定义域为R,求实数m的取值范围;
(2)若函数f(x)在区间$(-2,-\frac{1}{2})$上是递增的,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知p:“直线x+y-m=0与圆(x-1)2+y2=1相交”;q:“方程mx2-2x+1=0有实数解”.若“p∨q”为真,“¬q”为假,则实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知第二象限的角α的终边与单位圆的交点$P(m,\frac{{\sqrt{3}}}{2})$,则tanα=-$\sqrt{3}$.

查看答案和解析>>

同步练习册答案