精英家教网 > 高中数学 > 题目详情
6.甲手中有扑克牌的大小王牌和四色A各一张,共6张牌,现让乙和丙各从中随机抽取一张,则在乙抽到大王牌的情况下,丙抽到小王牌的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{15}$D.$\frac{1}{30}$

分析 设乙抽到大王,丙抽到小王,求出P(A),P(AB),由此利用条件概率计算公式能求出在乙抽到大王牌的情况下,丙抽到小王牌的概率.

解答 解:设乙抽到大王,丙抽到小王,
则P(A)=$\frac{1}{6}$,P(AB)=$\frac{1}{6}×\frac{1}{5}$=$\frac{1}{30}$,
∴在乙抽到大王牌的情况下,丙抽到小王牌的概率:
P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{1}{30}}{\frac{1}{6}}$=$\frac{1}{5}$.
故选:B.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意条件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若不等式|x-2|+|x+3|<a的解集为∅,则a的取值范围为(  )
A.(2,+∞)B.[-3,+∞)C.(-∞,5]D.(-∞,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)的定义域为(0,+∞),对任意的x1,x2∈(0,+∞)且x1≠x2都有$\frac{{x}_{1}f({x}_{2})-{x}_{2}f({x}_{1})}{{x}_{2}-{x}_{1}}$>0成立,则不等式f($\frac{1}{x}$)-$\frac{f(x)}{{x}^{2}}$<0的解集为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2a-x2($\frac{1}{e}$≤x≤e,e为自然数对数的底数)与g(x)=2lnx的图象上存在关于x轴对称的点,则实数a的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{2e^2}$-1C.$\frac{1}{2e^2}$+1D.$\frac{e^2}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(1+x)=-x+1,则f(x)=-x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AC=CE=3,AB=4,则AD 的长为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图(1),在△ABC中,AC=BC=1,∠ACB=90°,D是AB边上一点,沿CD将图形折叠成图(2),使得二面角B-CD-A是直二面角.

(1)若D是AB边的中点,求二面角C-AB-D的大小;
(2)若AD=2BD,求点B到平面ACD的距离;
(3)是否存在一点D,使得二面角C-AB-D是直二面角?若存在,求$\frac{BD}{AD}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的单调区间:
(1)f(x)=$\frac{1-x}{1+x}$;
(2)f(x)=-x2+2|x|+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.条件p:a≤3,条件q:a(a-3)≤0,则p是q的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案