精英家教网 > 高中数学 > 题目详情
14.已知直线y=ex+1与曲线y=ln(x+a)相切,则a的值为$\frac{3}{e}$.

分析 切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.

解答 解:设切点P(x0,y0),则y0=ex0+1,y0=ln(x0+a),
又∵$y′{|}_{x={x}_{0}}$=$\frac{1}{{x}_{0}+a}$=e
∴x0+a=$\frac{1}{e}$,x0=$\frac{1}{e}$-a
代入y0=ln(x0+a),
∴y0=-1,
y0=-1代入y0=ex0+1,
解得x0=-$\frac{2}{e}$,
x0=-$\frac{2}{e}$代入x0+a=$\frac{1}{e}$,
∴a=$\frac{3}{e}$.
故答案为$\frac{3}{e}$.

点评 本题考查导数的几何意义,常利用它求曲线的切线方程,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.将函数y=sin(2x+$\frac{π}{3}$)的图象经怎样平移后得到y=sin(2x+$\frac{π}{6}$)(  )
A.向左平移$\frac{π}{12}$B.向左平移$\frac{π}{6}$C.向右平移$\frac{π}{12}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2,b13=a3
(1)求数列{an}和{bn}的通项公式;
(2)记cn=(-1)nbn+an,求数列{cn}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从甲、乙、丙、丁、戊5名同学中任选4名参加接力赛,其中,甲不跑第一棒,乙、丙不跑相邻两棒,则不同的选排总数为(  )
A.48B.56C.60D.68

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.无穷数列 P:a1,a2,…,an,…,满足ai∈N*,且ai≤ai+1(i∈N*),对于数列P,记Tk(P)=min{n|an≥k}(k∈N*),其中min{n|an≥k}表示集合{n|an≥k}中最小的数.
(1)若数列P:1?3?4?7?…,则T5(P)=4;
(2)已知a20=46,则s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=966.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与2x-y+6=0.
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知各项为正的等比数列{an}中,a1与a17的等比中项为2,则4a7+a11的最小值为(  )
A.16B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:若0<x<$\frac{π}{2}$,则sin>x:命题q:若0<x<$\frac{π}{2}$,则tanx>x.在命题①p∧q;②p∨q;③p∨(¬q);④(¬p)∨q中,真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义集合运算:A?B={z|z=xy,x∈A,y∈B},设A={1,2},B={2,4},则集合A?B的所有元素之和为14.

查看答案和解析>>

同步练习册答案