精英家教网 > 高中数学 > 题目详情
6.已知各项为正的等比数列{an}中,a1与a17的等比中项为2,则4a7+a11的最小值为(  )
A.16B.8C.6D.4

分析 a1与a17的等比中项为2,可得:a1a17=4.利用基本不等式的性质与等比数列的性质即可得出.

解答 解:设各项为正的等比数列{an}的公比为q,∵a1与a17的等比中项为2,∴a1a17=4.
则4a7+a11≥2$\sqrt{4{a}_{7}•{a}_{11}}$=4$\sqrt{{a}_{1}{a}_{17}}$=4$\sqrt{4}$=8,当且仅当a7=a11=2时取等号.
故选:B.

点评 本题考查了基本不等式的性质与等比数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设函数y=f(x)的定义域为R,对于给定的正数K,定义函数${f_K}(x)=\left\{\begin{array}{l}f(x),f(x)≤K\\ K,f(x)>K\end{array}\right.$,取函数f(x)=-x2+2x,若对于任意的x∈(-∞,+∞),恒有fK(x)=f(x),则(  )
A.K的最大值为2B.K的最小值为2C.K的最大值为1D.K的最小值为1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知m∈R,函数f(x)=$\left\{\begin{array}{l}{|2x+1|,x<1}\\{lo{g}_{2}(x-1),x>1}\end{array}$,g(x)=x2-2x+2m-1,下列叙述中正确的有②
①函数y=f(f(x))有4个零点;
②若函数y=g(x)在(0,3)内有零点,则-1<m≤1;
③函数y=f(x)+g(x)有两个零点的充要条件是m≤-$\frac{1}{2}$或m≥-$\frac{1}{8}$;
④若函数y=f(g(x))-m有6个零点则实数m的取值范围是(0,$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线y=ex+1与曲线y=ln(x+a)相切,则a的值为$\frac{3}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a$=(sin35°,cos35°),$\overrightarrow b$=(cos5°,-sin5°),则$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.|x-2|+|x+3|≥4的解集为(  )
A.(-∞,-3]B.$[{-3,-\frac{5}{2}}]$C.$[{-∞,-\frac{5}{2}}]$D.$({-∞,-3})∪({-3,-\frac{5}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{-x,x<0}\\{\sqrt{x},x≥0}\end{array}\right.$,若关于x的方程f(x)=a(x+1)有三个不相等的实数根,则实数a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数分别由如表给出
x123
f(x)131
x123
g(x)321
则f(g(1))的值为1;满足g(f(x))=1的x值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x-1)=x2-2x,则f(x)的表达式是(  )
A.f(x)=x2-1B.f(x)=x2-xC.f(x)=x2+xD.f(x)=x2+1

查看答案和解析>>

同步练习册答案