精英家教网 > 高中数学 > 题目详情
9.无穷数列 P:a1,a2,…,an,…,满足ai∈N*,且ai≤ai+1(i∈N*),对于数列P,记Tk(P)=min{n|an≥k}(k∈N*),其中min{n|an≥k}表示集合{n|an≥k}中最小的数.
(1)若数列P:1?3?4?7?…,则T5(P)=4;
(2)已知a20=46,则s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=966.

分析 (1)根据题意直接可得结论;
(2)考查符合条件的数列P中,存在某个i(i≤i≤19)满足ai≤ai+1,通过Tk(P)=min{n|an≥k}(k∈N*),可得Tai+1(P)=i+1,故只需将数列P略作调整,仅将第ai的值增加1,即调整后s′=s.如果数列{an′}还有存在相邻两项不相等,继续做以上的操作,最终一定可以经过有限次的操作,使得{an}中的每一项变为相等,且操作中保持s的值不变,计算即可.

解答 解:(1)∵数列P:1?3?4?7?…,即从第三项起每项是前两项的和,
∴T1(P)=1,T2(P)=2,T3(P)=2,T4(P)=3,T5(P)=4;
故答案是:4;
(2)考查符合条件的数列P中,
若存在某个i(1≤i≤19)满足ai≤ai+1
对应可得Tk(P),及s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P).
∵Tk(P)=min{n|an≥k}(k∈N*),∴Tai+1(P)=i+1,
下面将数列P略作调整,仅将第ai的值增加1,具体如下:
将aj′=aj+1,对于任何j(j≠1)令aj′=aj,可得数列P′及其对应数列Tk(P′),
根据数列Tk(P′)的定义,可得Tai+1(P′)=i,且Tj(P′)=Tj(P)(j≠ai+1).
显然Tai+1(P′)=Tai+1(P)-1,
∴s′=a1′+a2′+…+a20′+T1(P′)+T2(P′)+…+T46(P′)
=a1+a2+…+ai-1+(ai+1)+ai+1+…+a20+T1(P)+T2(P)+…+(Tai+1-1)+Tai+2+…+T46(P)
=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=s,
即调整后s′=s.
如果数列{an′}还有存在相邻两项不相等,继续做以上的操作,
最终一定可以经过有限次的操作,使得{an}中的每一项变为相等,
且操作中保持s的值不变,
而当a1=a2=…=a20=46时,T1(P)=T2(P)=…=T46(P)=1,
∴s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=46×20+46=966.
故答案是:966.

点评 本题是一道建立在数列上的新定义题,考查分类讨论的思想,考查分析问题、解决问题的能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{{\begin{array}{l}{lg|x-2|}&{(x≠2)}\\ 1&{(x=2)}\end{array}}\right.$,若g(x)=[f(x)]2+bf(x)+c(其中b,c为常数)恰有5个不同的零点x1,x2,x3,x4,x5,则f(x1+x2+x3+x4+x5)=(  )
A.3lg2B.2lg2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合M={x∈N*|x<9},S1,S2,…,Sk都是M的含有两个元素的子集,且满足:对任意的Si={ai,bi}(i∈{1,2,3,…,k}),总存在Sj={aj,bj}(j≠i,j∈{1,2,3,…,k})使得$max\left\{{\frac{a_j}{b_j},\frac{b_j}{a_j}}\right\}=max\left\{{\frac{a_i}{b_i},\frac{b_i}{a_i}}\right\}$,(max{x,y}表示两个数x,y中的较大者),则k的最大值是(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知m∈R,函数f(x)=$\left\{\begin{array}{l}{|2x+1|,x<1}\\{lo{g}_{2}(x-1),x>1}\end{array}$,g(x)=x2-2x+2m-1,下列叙述中正确的有②
①函数y=f(f(x))有4个零点;
②若函数y=g(x)在(0,3)内有零点,则-1<m≤1;
③函数y=f(x)+g(x)有两个零点的充要条件是m≤-$\frac{1}{2}$或m≥-$\frac{1}{8}$;
④若函数y=f(g(x))-m有6个零点则实数m的取值范围是(0,$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线y=ex+1与曲线y=ln(x+a)相切,则a的值为$\frac{3}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a$=(sin35°,cos35°),$\overrightarrow b$=(cos5°,-sin5°),则$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{-x,x<0}\\{\sqrt{x},x≥0}\end{array}\right.$,若关于x的方程f(x)=a(x+1)有三个不相等的实数根,则实数a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=asin($\frac{π}{4}$x)(a>0)在同一半周期内的图象过点O,P,Q,其中O为坐标原点,P为函数f(x)的最高点,Q为函数f(x)的图象与x轴的正半轴的交点,△OPQ为等腰直角三角形.
(Ⅰ)求a的值;
(Ⅱ)将△OPQ绕原点O按逆时针方向旋转角α(0<α<$\frac{π}{4}$),得到△OP′Q′,若点P′恰好落在曲线y=$\frac{3}{x}$(x>0)上(如图所示),试判断点Q′是否也落在曲线y=$\frac{3}{x}$(x>0),并说明理由.

查看答案和解析>>

同步练习册答案