精英家教网 > 高中数学 > 题目详情
17.我校为了丰富同学们的课余生活,特举办了一次挑战主持人大赛,如图是七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(  )
A.4;4B.5;1.6C.84;4D.85;1.6

分析 由七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据为:84,84,84,86,87,由此能求出所剩数据的平均数和方差.

解答 解:由七位评委为某选手打出的分数的茎叶图,
去掉一个最高分和一个最低分后,所剩数据为:
84,84,84,86,87,
∴所剩数据的平均数为:$\overline{x}$=$\frac{1}{5}$(84+84+84+86+87)=85.
所剩数据的方差为:
S2=$\frac{1}{5}$[(84-85)2+(84-85)2+(84-85)2+(86-85)2+(87-85)2]=1.6.
故选:D.

点评 本题考查平均数的概率的求法,是基础题,解题时要认真审题,注意茎叶图性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点恰为抛物线y2=8x的焦点,且离心率为2,则该双曲线的标准方程为(  )
A.${x^2}-\frac{y^2}{3}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1$C.$\frac{x^2}{3}-{y^2}=1$D.$\frac{x^2}{12}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.抛物线y2=ax的焦点恰好为双曲线x2-y2=2的右焦点,则a=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.市场上有一种新型的强力洗衣液,特点是去污速度快.已知每投放a(1≤a≤4,且a∈R)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=a•f(x),其中f(x)=$\left\{\begin{array}{l}{\frac{16}{8-x}-1,0≤x≤4}\\{5-\frac{1}{2}x,4<x≤10}\end{array}\right.$.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.
(1)当一次投放a=4个单位的洗衣液时,求在2分钟时,洗衣液在水中释放的浓度.
(2)在(1)的情况下,即一次投放4个单位的洗衣液,则有效去污时间可达几分钟?
(3)若第一次投放2个单位的洗衣液,6分钟后再投放2个单位的洗衣液,请你写出第二次投放之后洗衣液在水中释放的浓度y(克/升)与时间x(分钟)的函数关系式,求出最低浓度,并判断接下来的四分钟是否能够持续有效去污.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=|x|x+bx+c,给出下列4个命题:
①b=0,c>0时,方程f(x)=0只有一个实数根;
②c=0时,y=f(x)是奇函数;
③y=f(x)的图象关于点(0,c)对称;
④方程f(x)=0至多有2个不相等的实数根.
上述命题中的所有正确命题的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.计算.
(1)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(\frac{3}{2})^{-2}}$; 
(2)${log_{2.5}}6.25+lg\frac{1}{100}+ln(e\sqrt{e})+{log_2}({log_2}16)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:全集U=R,集合A={x|4x>2},集合$B=\left\{{\left.x\right|}\right.\left.{\frac{x}{x+2}<0}\right\}$
(1)求A,B
(2)若M∪(A∪B)=R,且M∩(A∪B)=∅,求集合M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知在数列{an}中,a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{{a}_{n}-2,{a}_{n}>2}\\{-{a}_{n}+3,{a}_{n}≤2}\end{array}\right.$(n∈N*),记Sn=a1+a2+…an.若Sn=2015,则n=1343.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.甲、乙两支蓝球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入50万元,以后每场比赛门票收入比上一场增加10万元.
(Ⅰ)求总决赛中获得门票总收入恰好为350万元的概率;
(Ⅱ)设总决赛中获得的门票总收入为X,求X的均值E(X).

查看答案和解析>>

同步练习册答案