精英家教网 > 高中数学 > 题目详情

如图,是边长为2的正方形,平面,且.
(1)求证:平面;
(2)求证:平面平面;
(3)求多面体的体积。

(1)证明见解析;(2)证明见解析;(3).

解析试题分析:(1)记的交点为,连接,则可证,又,故平面;      
(2)因⊥平面,得,又是正方形,所以,从而平面,又 ,故平面平面
(3)由(2)知平面,且平面将多面体分成两个四棱锥和四棱锥.即,分别求出四棱锥和四棱锥的体积即可求出多面体的体积. 
证明:(1)记的交点为,连接,则
所以,又,所以
所以四边形是平行四边形
所以

平面;    

(2)因⊥平面,所以,
是正方形,所以
因为
所以平面
,
故平面平面
(3)由(2)知平面,且平面将多面体分成两个四棱锥和四棱锥是直角梯形,
,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在正方体中,的中点.

(1)求证:平面
(2)求证:平面平面
(3)求直线BE与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱中,点在边上,
(1)求证:平面
(2)如果点的中点,求证://平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中, ,中点,求直线与平面所成角的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图1,直角梯形中, 四边形是正方形,,.将正方形沿折起,得到如图2所示的多面体,其中面,中点.
(1) 证明:∥平面
(2) 求三棱锥的体积.
     
图1                     图2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,
.
(1)求证:
(2)若平面与平面所成的锐二面角的大小为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图的几何体中,四边形为正方形,四边形为等腰梯形,
(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平行四边形中,,且,以BD为折线,把△ABD折起,,连接AC.

(1)求证:;
(2)求二面角B-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•重庆)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.
(1)求PA的长;
(2)求二面角B﹣AF﹣D的正弦值.

查看答案和解析>>

同步练习册答案