精英家教网 > 高中数学 > 题目详情
(Ⅰ)求经过点(-
3
2
5
2
),且与椭圆9x2+5y2=45有共同焦点的椭圆方程;
(Ⅱ)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,点P(3,0)在该椭圆上,求椭圆的方程.
分析:(1)椭圆9x2+5y2=45化成标准方程,求出焦点坐标,进而设出椭圆方程,利用代入法可求;
(2)设椭圆方程为Ax2+By2=1(A>0,B>0,A≠B),利用代入法可求.
解答:解:(1)椭圆9x2+5y2=45化成标准方程,得
x2
5
+
y2
9
=1

∴椭圆的焦点在y轴,且c2=9-5=4,得c=2,焦点为(0,±2).
∵所求椭圆经过点(-
3
2
5
2
),且与已知椭圆有共同的焦点,
∴设椭圆方程为
y2
a2
+
x2
b2
=1
(a>b>0),
可得
a2-b2=4
25
4
a2
+
9
4
b2
=1
,解之得a2=10,b2=6,
∴所求的椭圆方程为
y2
10
+
x2
6
=1

(2)设椭圆方程为Ax2+By2=1(A>0,B>0,A≠B).
∵点P(3,0)在该椭圆上,∴9A=1,即A=
1
9

又a=3b,∴B=1或
1
81

∴椭圆的方程为
x2
9
+y2=1
y2
81
+
x2
9
=1
点评:由所给条件求椭圆的标准方程的基本步骤是:①定位,即确定椭圆的焦点在哪轴上;②定量,即根据条件列出基本量a、b、c的方程组,解方程组求得a、b的值;③写出方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2
,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆C:x2+y2+2x-4y-20=0的圆心为点A.
(1)求椭圆G的方程;  
(2)求△AF1F2面积;
(3)求经过点(-3,4)且与圆C相切的直线方程;
(4)椭圆G是否在圆C的内部,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过点(-3,4),并且在两坐标轴上截距之和为12的直线的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求焦点坐标为F1(0,-3),F2(0,3)且长轴长为10的椭圆的标准方程;
(2)求经过点(3,-1)的等轴双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过点A(3,2)圆心在直线y=2x上,与直线y=2x+5相切的圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求经过点P(3,2)和Q(-6,7)的双曲线的标准方程;

 (2)已知双曲线与椭圆=1有相同的焦点,且与椭圆的一个交点的纵坐标为4,求双曲线的标准方程.

查看答案和解析>>

同步练习册答案