精英家教网 > 高中数学 > 题目详情

已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于( )

A. B. C. D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,过F2与双曲线的一条渐近线平行的直线与另一条渐近线平行的直线与另一条渐近线交于点M,且cos∠F1MF2=0,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.二项式($\frac{1}{{x}^{2}}$-$\sqrt{x}$)n展开式中含有x项,则n可能的取值是(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=ax3+bx2+cx+d的图象如图所示,则(  )
A.a>0,b>0,c>0B.a>0,b>0,c<0C.a<0,b<0,c>0D.a<0,b<0,c<0

查看答案和解析>>

科目:高中数学 来源:2016-2017学年广东清远三中高二上学期第一次月考数学(理)试卷(解析版) 题型:选择题

如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球半径为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a、b、c∈R+,且a+b+c=1.
(Ⅰ)求证:2ab+bc+ca+$\frac{{c}^{2}}{2}$$≤\frac{1}{2}$;
(Ⅱ)求证:$\frac{{a}^{2}+{c}^{2}}{b}+\frac{{b}^{2}+{a}^{2}}{c}+\frac{{c}^{2}+{b}^{2}}{a}≥2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(文科)如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,D,E,F分别是AB,BC,CC1的中点.
(Ⅰ)证明:平面AEF⊥平面B1BCC1
(Ⅱ)若∠CA1D=45°,求三棱锥F-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不透明袋子中放有大小相同的5个球,球上分别标有号码1,2,3,4,5,若从袋中任取三个球,则这三个球号码之和为5的倍数的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{2}{9}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9. 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(  )
(参考数据:$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12B.24C.36D.48

查看答案和解析>>

同步练习册答案