精英家教网 > 高中数学 > 题目详情

已知空间四边形ABCD中,AB=CD=3,E、F分别是BC、AD上的点,并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.

 

 

【解析】【解析】
如图所示,在BD上取点G,

使BG∶GD=1∶2,

连接EG、FG.

在△BCD中,∵,∴EG∥CD,

且GE∶CD=1∶3,则EG=1,

同理FG∥AB,且FG∶AB=2∶3,则FG=2.

∴EG与FG所成的角即为AB与CD所成的角.

在△EFG中,EG=1,FG=2,EF=

由余弦定理得

cos∠EGF==-

∵异面直线所成角θ的范围是0°<θ≤90°,

∴cosθ≥0.

∴AB与CD所成角的余弦值为.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-1直线的倾斜角与斜率、直线方程(解析版) 题型:填空题

已知点P在直线x+2y-1=0上,点Q在直线x+2y+3=0上,PQ中点为M(x0,y0),且y0>x0+2,则的取值范围为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-6空间向量及运算(解析版) 题型:选择题

已知向量=(2,4,5),=(3,x,y),若,则(  )

A.x=6,y=15 B.x=3,y=

C.x=3,y=15 D.x=6,y=

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

已知α,β是两个不同的平面,给出下列四个条件:

①存在一条直线a,a⊥α,a⊥β;

②存在一个平面γ,γ⊥α,γ⊥β;

③存在两条平行直线a,b,a?α,b?β,a∥β,b∥α;

④存在两条异面直线a,b,a?α,b?β,a∥β,b∥α.

可以推出α∥β的是(  )

A.①③ B.②④ C.①④ D.②③

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

如图中四个正方体图形,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是(  )

A.①③ B.①④ C.②③ D.②④

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:解答题

A是△BCD平面外的一点,E,F分别是BC,AD的中点.

(1)求证:直线EF与BD是异面直线;

(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:选择题

设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是(  )

A.若AC与BD共面,则AD与BC共面

B.若AC与BD是异面直线,则AD与BC是异面直线

C.若AB=AC,DB=DC,则AD=BC

D.若AB=AC,DB=DC,则AD⊥BC

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-7数学归纳法(解析版) 题型:解答题

若不等式+…+>对一切正整数n都成立,猜想正整数a的最大值,并证明结论.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-4基本不等式(解析版) 题型:解答题

某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由形状为长方形A1B1C1D1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米(如图所示).

(1)若设休闲区的长和宽的比=x(x>1),求公园ABCD所占面积S关于x的函数S(x)的解析式;

(2)要使公园所占面积最小,则休闲区A1B1C1D1的长和宽该如何设计?

 

查看答案和解析>>

同步练习册答案