精英家教网 > 高中数学 > 题目详情

设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是(  )

A.若AC与BD共面,则AD与BC共面

B.若AC与BD是异面直线,则AD与BC是异面直线

C.若AB=AC,DB=DC,则AD=BC

D.若AB=AC,DB=DC,则AD⊥BC

 

C

【解析】A中,若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;B中,若AC与BD是异面直线,则A,B,C,D四点不共面,则AD与BC是异面直线;C中,若AB=AC,DB=DC,AD不一定等于BC;D中,若AB=AC,DB=DC,可以证明AD⊥BC.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-1直线的倾斜角与斜率、直线方程(解析版) 题型:选择题

直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足(  )

A.ab>0,bc<0 B.ab>0,bc>0

C.ab<0,bc>0 D.ab<0,bc<0

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

设m,n是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:

①若m?β,α⊥β,则m⊥α;②若α∥β,m?α,则m∥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β.

其中正确命题的序号是(  )

A.①③ B.①② C.③④ D.②③

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:解答题

已知空间四边形ABCD中,AB=CD=3,E、F分别是BC、AD上的点,并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:填空题

如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-2空间几何体的表面积和体积(解析版) 题型:填空题

某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-2空间几何体的表面积和体积(解析版) 题型:选择题

某几何体的三视图如图所示,则这个几何体的体积为(  )

A.4 B. C. D.8

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-7数学归纳法(解析版) 题型:选择题

用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是(  )

A.2k+2 B.2k+3

C.2k+1 D.(2k+2)+(2k+3)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-4基本不等式(解析版) 题型:选择题

设x>0,y>0,且x+4y=40,则lgx+lgy的最大值是(  )

A.40 B.10 C.4 D.2

 

查看答案和解析>>

同步练习册答案