精英家教网 > 高中数学 > 题目详情

某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.

 

 

2(π+)

【解析】由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积为2;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+).

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:解答题

如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明:B1C1⊥CE;

(2)求二面角B1-CE-C1的正弦值;

(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

已知α,β是两个不同的平面,给出下列四个条件:

①存在一条直线a,a⊥α,a⊥β;

②存在一个平面γ,γ⊥α,γ⊥β;

③存在两条平行直线a,b,a?α,b?β,a∥β,b∥α;

④存在两条异面直线a,b,a?α,b?β,a∥β,b∥α.

可以推出α∥β的是(  )

A.①③ B.②④ C.①④ D.②③

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:解答题

A是△BCD平面外的一点,E,F分别是BC,AD的中点.

(1)求证:直线EF与BD是异面直线;

(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:选择题

设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是(  )

A.若AC与BD共面,则AD与BC共面

B.若AC与BD是异面直线,则AD与BC是异面直线

C.若AB=AC,DB=DC,则AD=BC

D.若AB=AC,DB=DC,则AD⊥BC

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-2空间几何体的表面积和体积(解析版) 题型:选择题

如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为(  )

A. B. C. D.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-7数学归纳法(解析版) 题型:解答题

若不等式+…+>对一切正整数n都成立,猜想正整数a的最大值,并证明结论.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:解答题

已知非零向量a,b,且a⊥b,求证:.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-2一元二次不等式及其解法(解析版) 题型:填空题

对于满足0≤a≤4的实数a,使x2+ax>4x+a-3恒成立的x取值范围是________.

 

查看答案和解析>>

同步练习册答案