精英家教网 > 高中数学 > 题目详情

已知函数f(x)=1n(1-x)-1n(1+x)
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并加以证明.

解:(1)由函数f(x)=1n(1-x)-1n(1+x),可得,解得-1<x<1,故函数的定义域为(-1,1).
(2)函数的定义域关于原点对称,且f(-x)=ln(1+x)-ln(1-x)=-f(x),故函数f(x)是奇函数.
分析:(1)由函数的解析式可得,解得x的范围,可得函数的定义域.
(2)根据函数的定义域关于原点对称,且f(-x)=-f(x),可得函数f(x)是奇函数.
点评:本题主要考查对数函数的图象和性质,求函数的定义域,判断函数的奇偶性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案