精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)证明:
a1
a2
+
a2
a3
+…+
an
an+1
n
2
-
1
2
考点:数列与不等式的综合,等比关系的确定
专题:证明题,等差数列与等比数列,不等式的解法及应用
分析:(1)易求a1=1,由题意得2an=Sn+n,2an+1=Sn+1+(n+1),两式相减后变形可得an+1+1=2(an+1),根据等比数列的定义可得结论,利用等比数列通项公式可求an+1,进而可得an
(2)由于
an
an+1
=
2n-1
2n+1-1
2n-1
2n+1
=
1
2
-
1
2n+1
,再由等差和等比数列求和公式,即可得证.
解答: (1)证明:n=1时,2a1=S1+1,
∴a1=1.
由题意得2an=Sn+n,2an+1=Sn+1+(n+1),
两式相减得2an+1-2an=an+1+1,即an+1=2an+1.
于是an+1+1=2(an+1),
又a1+1=2.
∴数列{an+1}为首项为2,公比为2的等比数列,
∴an+1=2•2n-1=2n,即an=2n-1;
(2)证明:由于
an
an+1
=
2n-1
2n+1-1
2n-1
2n+1
=
1
2
-
1
2n+1

则有
a1
a2
+
a2
a3
+…+
an
an+1
>(
1
2
+
1
2
+…+
1
2
)-(
1
4
+
1
8
+…+
1
2n+1

=
n
2
-
1
4
(1-
1
2n
)
1-
1
2
n
2
-
1
2

则原不等式成立.
点评:本题考查数列的通项和前n项和间的关系,考查等比数列的通项公式和求和公式,考查数列不等式的证明方法:运用放缩法证明,考查推理能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

两平行直线4x+3y-4=0与8x+6y-9=0的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将1034(5) 转化成八进制数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)和圆O:x2+y2=
3b2
4
,若C上存在点P,使得过点P引圆O的两条切线,切点分别为A,B,满足∠APB=60°,则椭圆C的离心率取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为棱长是1的正方体的表面展开图,在原正方体中,给出下列三个命题:
①点M到AB的距离为
2
2

②三棱锥C-DNE的体积是
1
6

③AB与EF所成的角是
π
2

其中正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的图象在伸缩变换φ:
x′=2x
y′=3y
,作用下得到的曲线的方程为y′=3sin(x′+
π
6
),求函数y=f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x+
1
x

(1)证明:函数f(x)是奇函数;
(2)证明:函数f(x)在(0,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+sinβ=1,cosα+cosβ=0,求sin2α+cos2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行,数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;…,以此类推,则第11行从左至右算第7个数字为
 

查看答案和解析>>

同步练习册答案