精英家教网 > 高中数学 > 题目详情
已知函数
(1)曲线C: 经过点P(1,2),且曲线C在点P处的切线平行于直线,求的值。
(2)已知在区间(1,2)内存在两个极值点,求证:
(1); (2)见解析。
由题意可得f′(x)=0即x2+2ax+b=0在(1,2)内有两个不等的实根,根据二次方程的实根分布可求
(1)曲线在P(1,2)处的切线与y=2x+1平行等价于函数在该点的导数为2,f(1)=2,代入可求a,b
(2)由题意可得f′(x)=0即x2+2ax+b=0在(1,2)内有两个不等的实根,根据二次方程的实根分布可求
解:(1)。。。。。。。。。。。。。。。。。。。。。。6
(2)由条件可知,把相加得
,得证..。。。。。。6
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知一等差数列的前四项和为124,后四项和为156,各项和为210,则此等差数列的项数是(    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数的值;
(Ⅲ)设,求在区间上的最大值.(其中为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数 (R).
(1) 若,求函数的极值;
(2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数 
(1)当时,求函数的最大值;
(2)令,()其图象上任意一点处切线的斜率恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数 (为实常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知,求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在R上的奇函数,且f(2)=0,当x>0时,有的导数<0恒成立,则不等式的解集是:
A.(一2,0)(2,+ B.(一2,0)(0,2)
C.(-,-2)(2,+ D.(-,-2)(0,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的单调区间;
(2)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.如图为函数的图象,为函数的导函数,则不等式的解集为(         ).
A.B.
C.D.

查看答案和解析>>

同步练习册答案