精英家教网 > 高中数学 > 题目详情
是定义在R上的奇函数,且f(2)=0,当x>0时,有的导数<0恒成立,则不等式的解集是:
A.(一2,0)(2,+ B.(一2,0)(0,2)
C.(-,-2)(2,+ D.(-,-2)(0,2)
D
因为设是定义在R上的奇函数,且f(2)=0,当x>0时,有的导数<0恒成立,则在给定区间上递减,那么
不等式解集为(-,-2)(0,2),选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,有一边长为2米的正方形钢板缺损一角(图中的阴影部分),边缘线是以直线为对称轴,以线段的中点为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.

(Ⅰ)请建立适当的直角坐标系,求阴影部分的边缘线的方程;
(Ⅱ)如何画出切割路径,使得剩余部分即直角梯形的面积最大?
并求其最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且函数处都取得极值。
(1)求实数的值;
(2)求函数的极值;
(3)若对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数
(1)曲线C: 经过点P(1,2),且曲线C在点P处的切线平行于直线,求的值。
(2)已知在区间(1,2)内存在两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 (为实常数)。
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知,求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)求函数在区间上的最小值;
(Ⅲ)试判断方程(其中)是否有实数解?并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间与极值点;
(2)若,方程有三个不同的根,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间上是减函数,则实数a的取值范围是        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数时取得极值.
(1)求a、b的值;
(2)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

同步练习册答案