精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ex-1-$\frac{ax}{x-1}$,a∈R.
(1)若函数g(x)=(x-1)f(x)在(0,1)上有且只有一个极值点,求a的范围;
(2)当a≤-1时,证明:f(x)lnx>0对于任意x∈(0,1)∪(1,+∞)成立.

分析 (1)由题意可知:由函数g(x)在(0,1)上有且只有一个极值点,等价于g′(x)=xex-a-1在(0,1)上有且仅有一个变号零点,构造辅助函数,根据函数的单调性,即可求得a的范围;
(2)由题意,利用分析法,由结论可得 (x-1)(ex-1)-ax≥0 在(0,+∞)恒成立,设g(x)=(x-1)(ex-1)-ax,x∈[0,+∞),利用导数研究函数g(x)单调性,则结论易得.

解答 解:(1)g(x)=(x-1)f(x)=(x-1)(ex-1)-ax,x∈(0,1),
g′(x)=xex-a-1,
由函数g(x)在(0,1)上有且只有一个极值点,等价于g′(x)=xex-a-1在(0,1)上有且仅有一个变号零点,
令H(x)=xex-a-1,x∈[0,1],
H′(x)=ex(x+1),由x∈[0,1],H′(x)>0,
H(x)在[0,1]单调递增,
∴H(0)=-a-1<0,H(1)=e-a-1>0,
解得:-1<a<e-1,
∴当-1<a<e-1时,函数g(x)在(0,1)上有且只有一个极值点;
(2)证明:f(x)lnx=(ex-1-$\frac{ax}{x-1}$)lnx,只需证:$\frac{1}{x-1}$•lnx[(x-1)(ex-1)-ax]≥0 在 (0,1)∪(1,+∞) 上恒成立,
由x∈(0,1)∪(1,+∞) 时,$\frac{1}{x-1}$•lnx>0恒成立,
∴只需证:(x-1)(ex-1)-ax≥0 在(0,+∞)恒成立,
设g(x)=(x-1)(ex-1)-ax,x∈[0,+∞),
由g(0)=0  恒成立,
∴只需证:g(x)≥0 在[0,+∞),恒成立 g′(x)=xex-1-a,
g″(x)=(x+1)ex>0恒成立,
∴g′(x)单调递增,g′(x)≥g′(0)=-1-a≥0,
∴g(x)单调递增,g(x)≥g(0)=0,
∴g(x)≥0 在[0,+∞)恒成立,
∴f(x)lnx>0对于任意x∈(0,1)∪(1,+∞)成立.

点评 本题考查导数的综合应用,考查利用导数求函数的单调性及极值,考查分析法证明不等式成立,考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知正四面体的棱长为4,则此四面体的外接球的表面积是(  )
A.24πB.18πC.12πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.现从某班的一次期末考试中,随机的抽取了七位同学的数学(满分150分)、物理(满分110分)成绩如表所示,数学、物理成绩分别用特征量t,y表示,
特征量1234567
t101124119106122118115
y74838775858783
(1)求y关于t的回归方程;
(2)利用(1)中的回归方程,分析数学成绩的变化对物理成绩的影响,并估计该班某学生数学成绩130分时,他的物理成绩(精确到个位).
附:回归方程$\widehaty=\widehatbt+\widehata$中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.${\sum_{i=1}^7{({{t_i}-\overline t})}^2}=432$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:
 物理及格物理不及格合计
数学及格28836
数学不及格162036
合计442872
(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;
(2)从抽取的物理不及格的学生中按数学及格与不及格的比例,随机抽取7人,再从抽取的7人中随机抽取2人进行成绩分析,求至少有一名数学及格的学生概率.
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1}•{n}_{2}•{n}_{+1}•{n}_{+2}}$.
P(X2≥k)0.1500.1000.0500.010
k2.0722.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知某产品的广告费用x(单位:万元)与销售额y(单位:万元)具有线性关系关系,其统计数据如下表:
x3456
y25304045
由上表可得线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,据此模型预报广告费用为8万元时的销售额是(  )
附:$\widehat{b}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)•({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$;$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.
A.59.5B.52.5C.56D.63.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l的参数方程是$\left\{\begin{array}{l}x=1+0.8t\\ y=2+0.6t\end{array}\right.$(t为参数),则它的普通方程是3x-4y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=ex,g(x)=ax2-ax.若曲线y=f(x)上存在两点关于直线y=x的对称点在曲线y=g(x)上,则实数a的取值范围是(  )
A.(0,1)B.(1,+∞)C.(0,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=3cosα\\ y=\sqrt{3}sinα\end{array}\right.$(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为$ρcos(θ+\frac{π}{3})=\sqrt{3}$.
(Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;
(Ⅱ)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在我国古代数学名著《九章算术》中将底面为直角三角形,且侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC-A1B1C1中,AB=BC,AA1>AB,堑堵的顶点C1到直线A1C的距离为m,C1到平面A1BC的距离为n,则$\frac{m}{n}$的取值范围是(  )
A.(1,$\frac{2\sqrt{3}}{3}$)B.($\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{3}}{3}$)C.($\frac{2\sqrt{3}}{3}$,$\sqrt{3}$)D.($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$)

查看答案和解析>>

同步练习册答案