精英家教网 > 高中数学 > 题目详情
18.已知某产品的广告费用x(单位:万元)与销售额y(单位:万元)具有线性关系关系,其统计数据如下表:
x3456
y25304045
由上表可得线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,据此模型预报广告费用为8万元时的销售额是(  )
附:$\widehat{b}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)•({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$;$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.
A.59.5B.52.5C.56D.63.5

分析 由表中数据计算$\overline{x}$、$\overline{y}$,求出回归系数$\widehat{b}$、$\widehat{a}$,写出回归方程,
利用回归方程计算x=8时$\widehat{y}$的值即可.

解答 解:由表中数据可得,$\overline{x}$=$\frac{1}{4}$×(3+4+5+6)=4.5,
$\overline{y}$=$\frac{1}{4}$×(25+30+40+45)=35,
回归系数$\widehat{b}$=$\frac{3×25+4×30+5×40+6×45-4×4.5×35}{{3}^{2}{+4}^{2}{+5}^{2}{+6}^{2}-4{×4.5}^{2}}$=7,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=35-7×4.5=3.5,
∴线性回归方程为$\widehat{y}$=7x+3.5,
∴当x=8时,$\widehat{y}$=7×8+3.5=59.5;
据此模型预报广告费用为8万元时的销售额是59.5万元.
故选:A.

点评 本题考查了回归直线方程的求法与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.掷两枚均匀的大小不同的骰子,记“两颗骰子的点数和为8”为事件A,“小骰子出现的点数小于大骰子出现的点数”为事件B,则P(A|B),P(B|A)分别为(  )
A.$\frac{2}{15},\frac{2}{5}$B.$\frac{3}{14},\frac{3}{5}$C.$\frac{1}{3},\frac{1}{5}$D.$\frac{4}{5},\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,0≤x≤$\frac{1}{2}$≤y≤1,则|x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$|的最小值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ex+sinx(e为自然对数的底数),g(x)=ax,F(x)=f(x)-g(x).
(1)若a=2,且直线x=t(t≥0)分别与函数f(x)和g(x)的图象交于P,Q,求P,Q两点间的最短距离;
(2)若x≥0时,函数y=F(x)的图象恒在y=F(-x)的图象上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列参数方程中表示直线x+y-2=0的是(  )
A.$\left\{\begin{array}{l}x=2+t\\ y=1-t\end{array}\right.(t$为参数)B.$\left\{\begin{array}{l}x=1-\sqrt{t}\\ y=1+\sqrt{t}\end{array}\right.(t$为参数)
C.$\left\{\begin{array}{l}x=3+t\\ y=-1-t\end{array}\right.(t$为参数)D.$\left\{\begin{array}{l}x=1-{t^2}\\ y=1+{t^2}\end{array}\right.(t$为参数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex-1-$\frac{ax}{x-1}$,a∈R.
(1)若函数g(x)=(x-1)f(x)在(0,1)上有且只有一个极值点,求a的范围;
(2)当a≤-1时,证明:f(x)lnx>0对于任意x∈(0,1)∪(1,+∞)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知两组数据x,y的对应值如下表,若已知x,y是线性相关的且线性回归方程为:$\hat y=\hat bx+\hat a$,经计算知:$\hat b=-1.4$,则$\hat a$=(  )
x45678
y1210986
A.-0.6B.0.6C.-17.4D.17.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知α∈[0,π),在直角坐标系xOy中,直线l1的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数);在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l2的极坐标方程是ρcos(θ-α)=2sin(α+$\frac{π}{6}$).
(Ⅰ)求证:l1⊥l2
(Ⅱ)设点A的极坐标为(2,$\frac{π}{3}$),P为直线l1,l2的交点,求|OP|•|AP|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:?x<1,$log{\;}_{\frac{1}{3}}x<0$;命题q:?x0∈R,$x_0^2≥{2^{x_0}}$,则下列命题中为真命题的是(  )
A.p∨qB.(¬p)∧(¬q)C.p∨(¬q)D.p∧q

查看答案和解析>>

同步练习册答案