分析 单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,不妨设$\overrightarrow{a}$=(-1,0),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$=x($\overrightarrow{a}-\overrightarrow{c}$)+y$(\overrightarrow{b}-\overrightarrow{c}$)+$\overrightarrow{c}$=(-$\frac{3}{2}x+\frac{1}{2}$,$\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$),
则|x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$|2=(-$\frac{3}{2}$x+$\frac{1}{2}$)2+($\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$)2,再利用柯西不等式求解.
解答
解:单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,不妨设$\overrightarrow{a}$=(-1,0),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)(如图),
x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$=x($\overrightarrow{a}-\overrightarrow{c}$)+y$(\overrightarrow{b}-\overrightarrow{c}$)+$\overrightarrow{c}$=(-$\frac{3}{2}x+\frac{1}{2}$,$\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$),
∴|x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$|2=(-$\frac{3}{2}$x+$\frac{1}{2}$)2+($\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$)2,
由柯西不等式得=[(-$\frac{3}{2}$x+$\frac{1}{2}$)2+($\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$)2]•[($\sqrt{3}$)2+32]≥[$\sqrt{3}$(-$\frac{3}{2}x+\frac{1}{2}$)+3($\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$)]2=(3$\sqrt{3}$y-$\sqrt{3}$)2
∵$\frac{1}{2}$≤y≤1,∴y=$\frac{1}{2}$时,(-$\frac{3}{2}$x+$\frac{1}{2}$)2+($\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$)2最小为$\frac{1}{16}$
则|x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$|的最小值为$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.
点评 本题考查了向量的模的取值范围的求法,考查了不等式的性质,转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{n}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{n}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{n}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| t | 101 | 124 | 119 | 106 | 122 | 118 | 115 |
| y | 74 | 83 | 87 | 75 | 85 | 87 | 83 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 3 | 4 | 5 | 6 |
| y | 25 | 30 | 40 | 45 |
| A. | 59.5 | B. | 52.5 | C. | 56 | D. | 63.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {4} | B. | {5} | C. | [4,5] | D. | {4,5} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com