精英家教网 > 高中数学 > 题目详情
17.如图,在△ABC中,cos∠ABC=$\frac{1}{3}$,AB=2,点D在线段AC上,且AD=2DC,BD=$\frac{{4\sqrt{3}}}{3}$,则△ABC的面积为2$\sqrt{2}$.

分析 设BC=a,AD=2DC=2x,则AC=3x,先根据余弦定理可得9x2=4+a2-$\frac{4}{3}$a,①,再根据余弦定理可得3x2-a2=-6,②,求出a的值,再根据三角形的面积公式计算即可.

解答 解:设BC=a,AD=2DC=2x,则AC=3x,
在△ABC中由余弦定理可得AC2=AB2+BC2-2AB•BCcos∠ABC,
即9x2=4+a2-$\frac{4}{3}$a,①
在△ABD和△DBC中由余弦定理可得
cos∠ADB=$\frac{B{D}^{2}+A{D}^{2}-A{B}^{2}}{2BD•AD}$=$\frac{\frac{16}{3}+4{x}^{2}-4}{\frac{16\sqrt{3}}{3}x}$,
cos∠BDC=$\frac{B{D}^{2}+C{D}^{2}-B{C}^{2}}{2BD•CD}$=$\frac{\frac{16}{3}+{x}^{2}-{a}^{2}}{\frac{8\sqrt{3}}{3}x}$,
∵∠ADC=π-∠BDC,
∴cos∠ADC=cos(π-∠BDC)=-cos∠BDC,
∴$\frac{\frac{16}{3}+4{x}^{2}-4}{\frac{16\sqrt{3}}{3}x}$=-$\frac{\frac{16}{3}+{x}^{2}-{a}^{2}}{\frac{8\sqrt{3}}{3}x}$,
化简得3x2-a2=-6,②,
由①②可得a=3,x=1,BC=3,
∵cos∠ABC=$\frac{1}{3}$,
∴sin∠ABC=$\frac{2\sqrt{2}}{3}$,
∴S△ABC=$\frac{1}{2}$AB•BC•sin∠ABC=$\frac{1}{2}$×2×3×$\frac{2\sqrt{2}}{3}$=2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题考查了余弦定理和三角形的面积公式,考查了学生的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i=1,2,3,…,n),观测数据均在回归直线方程$y=\frac{1}{3}x+2$上,则该组数据的残差平方和的值为(  )
A.0B.$\frac{1}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.掷两枚均匀的大小不同的骰子,记“两颗骰子的点数和为8”为事件A,“小骰子出现的点数小于大骰子出现的点数”为事件B,则P(A|B),P(B|A)分别为(  )
A.$\frac{2}{15},\frac{2}{5}$B.$\frac{3}{14},\frac{3}{5}$C.$\frac{1}{3},\frac{1}{5}$D.$\frac{4}{5},\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(Ⅰ)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.写出C的参数方程;
(Ⅱ)极坐标系下,求直线ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$与圆ρ=2的公共点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\frac{{ln({2x})}}{x}$,关于x的不等式f2(x)+af(x)>0只有两个整数解,则实数a的取值范围为(-ln2,-$\frac{ln6}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.欲用系统抽样的方法从1000人中抽取50人做问卷调查.为此,将他们随机编号为1,2,…,1000,分组后,已知在第一组中采用抽签法抽到的号码为8.若编号在区间[1,400]上的人做问卷A;编号在区间[401,750]上的人做问卷B,其余的人做问卷C.则做问卷C的人数是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,0≤x≤$\frac{1}{2}$≤y≤1,则|x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$|的最小值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ex+sinx(e为自然对数的底数),g(x)=ax,F(x)=f(x)-g(x).
(1)若a=2,且直线x=t(t≥0)分别与函数f(x)和g(x)的图象交于P,Q,求P,Q两点间的最短距离;
(2)若x≥0时,函数y=F(x)的图象恒在y=F(-x)的图象上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知α∈[0,π),在直角坐标系xOy中,直线l1的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数);在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l2的极坐标方程是ρcos(θ-α)=2sin(α+$\frac{π}{6}$).
(Ⅰ)求证:l1⊥l2
(Ⅱ)设点A的极坐标为(2,$\frac{π}{3}$),P为直线l1,l2的交点,求|OP|•|AP|的最大值.

查看答案和解析>>

同步练习册答案