精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=e-x(lnx-2k)(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与y轴垂直.
(1)求f(x)的单调区间;
(2)设$g(x)=\frac{1-x(lnx+1)}{e^x}$,对任意x>0,证明:(x+1)g(x)<ex+ex-2

分析 (1)求出f(x)的导数,通过解关于导函数的不等式,求出函数的单调区间即可;
(2)问题转化为证$\frac{g(x)}{e^x}<\frac{{1+{e^{-2}}}}{x+1}$成立,从而证明$g(x)=\frac{1-xlnx-x}{e^x}<1-xlnx-x$,设F(x)=1-xlnx-x,根据函数的单调性证明即可.

解答 解:(1)因为$f'(x)=\frac{{\frac{1}{x}-lnx+2k}}{e^x}$,
由已知得$f'(1)=\frac{1+2k}{e}=0$,∴$k=-\frac{1}{2}$.
所以$f'(x)=\frac{{\frac{1}{x}-lnx-1}}{e^x}$,…(2分)
设$k(x)=\frac{1}{x}-lnx-1$,则$k'(x)=-\frac{1}{x^2}-\frac{1}{x}<0$,
在(0,+∞)上恒成立,即k(x)在(0,+∞)上是减函数,
由k(1)=0知,当0<x<1时k(x)>0,
从而f'(x)>0,当x>1时k(x)<0,从而f'(x)<0.
综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞)…(5分)
(2)因为x>0,要证原式成立即证$\frac{g(x)}{e^x}<\frac{{1+{e^{-2}}}}{x+1}$成立,
现证明:对任意x>0,g(x)<1+e-2恒成立,
当x≥1时,由(1)知g(x)≤0<1+e-2成立;
当0<x<1时,ex>1,且由(1)知g(x)>0,
∴$g(x)=\frac{1-xlnx-x}{e^x}<1-xlnx-x$.
设F(x)=1-xlnx-x,x∈(0,1),则F'(x)=-(lnx+2),
当x∈(0,e-2)时,F′(x)>0,
当x∈(e-2,1)时,F′(x)<0,
所以当x=e-2时,F(x)取得最大值F(e-2)=1+e-2. 
所以g(x)<F(x)≤1+e-2,即0<x<1时,g(x)<1+e-2
综上所述,对任意x>0,g(x)<1+e-2.①…(9分)
令G(x)=ex-x-1(x>0),则G'(x)=ex-1>0恒成立,
所以G(x)在(0,+∞)上递增,G(x)>G(0)=0恒成立,
即ex>x+1>0,即$0<\frac{1}{e^x}<\frac{1}{x+1}$.   ②
当x≥1时,有:$\frac{g(x)}{e^x}≤0<\frac{{1+{e^{-2}}}}{x+1}$;
当0<x<1时,由①②式,$\frac{g(x)}{e^x}<\frac{{1+{e^{-2}}}}{x+1}$,
综上所述,x>0时,$\frac{g(x)}{e^x}<\frac{{1+{e^{-2}}}}{x+1}$成立,
故原不等式成立…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知数列{an}中,a1=1,a2=3,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2(n∈N*),若对于任意n∈N*,A(n),B(n),C(n)成等差数列,则A(n)=(  )
A.3n-1B.2n-1+n2-1C.2n2-3n+2D.n2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于x的不等式ax-b>0的解集为(-∞,-1),则关于x的不等式$\frac{bx-a}{x+2}$>0的解集为{x|x>-1,或x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在(-1,1)上的函数f(x)满足:f(x)-f(y)=f($\frac{x-y}{1-xy}$),当x∈(-1,0)时,有f(x)>0,且f(-$\frac{1}{2}$)=1.设m=f($\frac{1}{5}$)+f($\frac{1}{11}$)+…+f($\frac{1}{{n}^{2}+n-1}$)n≥2,n∈N*,则实数m与-1的大小关系是m>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线M:x2=4y,圆C:x2+(y-3)2=4,在抛物线M上任取一点P,向圆C作两条切线PA和PB,切点分别为A,B,则$\overrightarrow{CA}•\overrightarrow{CB}$的最大值为(  )
A.$-\frac{4}{9}$B.$-\frac{4}{3}$C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线与抛物线C交于点A,B两点,且直线l与圆x2-px+y2-$\frac{3}{4}{p^2}$=0交于C,D两点,若|AB|=2|CD|,则直线l的斜率为(  )
A.$±\frac{{\sqrt{2}}}{2}$B.$±\frac{{\sqrt{3}}}{2}$C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若抛物线y=$\frac{1}{3}$x2上的两点A,B的横坐标恰好是关于x的方程x2+px+q=0(常数p,q∈R)的两个实根,则直线AB的方程是(  )
A.qx+3y+p=0B.qx-3y+p=0C.px+3y+q=0D.px-3y+q=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等比数列{an}中,公比q>1,a1+a7=27,a3•a5=72,则$\frac{{a}_{13}}{{a}_{5}}$=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正四棱锥P-ABCD中,AB=2,PA=$\sqrt{5}$.
(1)求侧面PAD与侧面PBC所成二面角的大小;
(2)在直线PA上是否存在点E,使CE⊥平面PAD.若存在,指出点E的位置,若不存在,说明理由.

查看答案和解析>>

同步练习册答案