精英家教网 > 高中数学 > 题目详情
15.若抛物线y=$\frac{1}{3}$x2上的两点A,B的横坐标恰好是关于x的方程x2+px+q=0(常数p,q∈R)的两个实根,则直线AB的方程是(  )
A.qx+3y+p=0B.qx-3y+p=0C.px+3y+q=0D.px-3y+q=0

分析 分别设出A和B的坐标,根据抛物线上两点的横坐标都是方程的解得到方程有两个不等的实数根,即△>0,列出p与q的关系式,在这个关系式成立时,分别把A和B的坐标代入抛物线解析式和方程中,分别消去平方项,根据两等式的特点即可得到直线AB的方程.

解答 解:设A(x1,y1),B(x2,y2),且方程有两个不同的解得到:△=p2-4q>0,
把A的坐标代入抛物线解析式和已知的方程得:x12=3y1①,x12+px1+q=0②,
①-②整理得:px1+3y1+q=0③;
同理把B的坐标代入抛物线解析式和已知的方程,化简可得:px2+3y2+q=0④,
③④表示经过A和B的方程,所以直线AB的方程是:px+3y+q=0(△=p2-4q>0).
故答案选:C.

点评 本题考查学生会求动点的轨迹方程,掌握一元二次方程有两个不相等的实数根的条件为△>0,是一道综合题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.n∈N,A=($\sqrt{7}$+2)2n+1,B为A的小数部分,则AB的值应是(  )
A.72n+1B.22n+1C.32n+1D.52n+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在如图所示的程序框图中(其中hi-1′(x)表示hi-1的导函数),当输入h0(x)=xex时,输出的hi(x)的结果是(x+2016)ex,则程序框图中的判断框内应填入(  )
A.i≤2014?B.i≤2015?C.i≤2016?D.i≤2017?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=e-x(lnx-2k)(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与y轴垂直.
(1)求f(x)的单调区间;
(2)设$g(x)=\frac{1-x(lnx+1)}{e^x}$,对任意x>0,证明:(x+1)g(x)<ex+ex-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=4x的焦点为F,A(-1,0),点P是抛物线上的动点,则当$\frac{{|{PF}|}}{{|{PA}|}}$的值最小时,△PAF的面积为(  )
A.$\frac{{\sqrt{2}}}{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-$\frac{a}{2}{x}^{2}$+(a-1)x+lnx.
(Ⅰ)若a>-1,求函数f(x)的单调区间;
(Ⅱ)若a>1,求证:(2a-1)f(x)<3ea-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.《九章算术》“勾股“章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走十步,后又斜向北偏东合适方向走了一段后与乙相遇.甲、乙各走了多少步?甲、乙分别走多少步?(  )
A.20、8B.24、10C.10.5、24.5D.24.5、10.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等比数列{an}满足a2•a4=a1,且a2与2a5的等差中项为5,Sn为其的前n项和,则S5等于31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知F是抛物线x2=2py(p>0)的焦点,O为坐标原点,过点O、F的圆的圆心为Q,点Q到抛物线准线的距离为$\frac{3}{2}$.过点F的直线l交抛物线于A,B两点,过A,B分别作抛物线的切线,两切线交点为M.
(1)求抛物线的方程;
(2)求$\overrightarrow{MF}$•$\overrightarrow{MB}$-$\overrightarrow{MF}$•$\overrightarrow{MA}$的值.

查看答案和解析>>

同步练习册答案