精英家教网 > 高中数学 > 题目详情
(1)化简:(2a
2
3
b
1
2
)(-6a
1
2
b
1
3
)÷(-3a
1
6
b
5
6
);
(2)已知log83=p,log35=q,则lg5的值为多少?(用p、q表示).
考点:对数的运算性质
专题:函数的性质及应用
分析:(1)利用指数的运算性质即可得出;
(2)利用对数的运算性质、lg2+lg5=1即可得出.
解答: 解(1)原式=
-12a
2
3
+
1
2
b
1
2
+
1
3
-3a
1
6
b
5
6
=4a
7
6
-
1
6
b
5
6
-
5
6
=4a.
(2)∵log83=p,log35=q,
lg3
3lg2
=p
lg5
lg3
=q

lg5
3lg2
=pq

∴lg5=3(1-lg5)pq,
解得lg5=
3pq
1+3pq
点评:本题考查了指数的运算性质、对数的运算性质、lg2+lg5=1,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数在其定义域上既是奇函数又是增函数的是(  )
A、y=x-1
B、y=-
-x
C、y=
x
3
D、y=-
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.
(1)若p=4时,求A∩B、A∪B;
(2)若B⊆A,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=loga(1-x),h(x)=loga(x+3)(0<a<1)
(1)设f(x)=g(x)-h(x),用定义证明函数f(x)在定义域上是增函数;
(2)设F(x)=g(x)+h(x),若函数F(x)的值域是[-2,+∞),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

P为椭圆
x2
25
+
y2
16
=1上任意一点,F1,F2为左右焦点.如图所示:
(1)若PF1的中点为M,求证:|MO|=5-
1
2
|PF1|
(2)若∠F1PF2=60°,求|PF1|•|PF2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;    
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,求直线l的方程;
(2)求以点(2,-1)为圆心且与直线x+y=6相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:“对任意的x∈R,x2-2x>a”,命题q:“存在x∈R,使x2+2ax+2-a=0”.如果命题p∨q为真,命题p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3-2bx2+cx+4d(a、b、c、d∈R)图象关于原点对称,且当x=1时,f(x)取极小值-
2
3

(Ⅰ)求a、b、c、d的值;
(Ⅱ)若x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤
4
3

(Ⅲ)当x∈[-1,1]时,图象上是否存在两点,使得过此两点处的切线互相垂直?试证明你的结论.

查看答案和解析>>

同步练习册答案