精英家教网 > 高中数学 > 题目详情
18.设F是抛物线C1:y2=2px(p>0)的焦点,点A是抛物线与双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的一个公共点,且AF⊥x轴,则双曲线的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.2

分析 求出抛物线的焦点坐标和准线方程,利用抛物线的定义得到 $\frac{pb}{2a}$=$\frac{p}{2}$+$\frac{p}{2}$,利用离心率的定义求得双曲线的离心率.

解答 解:由题意得 F($\frac{p}{2}$,0),准线为 x=-$\frac{p}{2}$,设双曲线的一条渐近线为 y=$\frac{b}{a}$x,则点A( $\frac{p}{2}$,$\frac{pb}{2a}$),
由抛物线的定义得|PF|等于点A到准线的距离,即$\frac{pb}{2a}$=$\frac{p}{2}$+$\frac{p}{2}$,
∴$\frac{b}{2a}$=1,e=$\frac{c}{a}$=$\sqrt{5}$,
故选A.

点评 本题考查抛物线的定义和双曲线、抛物线的标准方程,以及双曲线、抛物线的简单性质的应用,利用抛物线的定义得到$\frac{pb}{2a}$=$\frac{p}{2}$+$\frac{p}{2}$,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.己知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点与抛物线y2=8x的焦点重合,则a=(  )
A.$\sqrt{19}$B.$\sqrt{13}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某人经营一个抽奖游戏,顾客花费4元钱可购买一次游戏机会,毎次游戏,顾客从标有1、2、3、4的4个红球和标有2、4的2个黑球共6个球中随机摸出2个球,并根据模出的球的情况进行兑奖,经营者将顾客模出的球的情况分成以下类别:
A.两球的顔色相同且号码相邻;
B.两球的颜色相同,但号码不相邻;
C.两球的顔色不同.但号码相邻;
D.两球的号码相同
E.其他情况
经营者打算将以上五种类别中最不容易发生的一种类別对应一等奖,最容易发生的一种类别对应二等奖.其它类别对应三等奖
(1)一、二等奖分别对应哪一种类别(用宇母表示即可)
(2)若中一、二、三等奖分别获得价值10元、4元、1元的奖品,某天所有顾客参加游戏的次数共计100次,试估计经营者这一天的盈利.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值(  )
A.2B.3C.$\frac{3}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.摩拜单车和ofo小黄车等各种共享自行车已经遍布大街小巷,给我们的生活带来了便利.某自行车租车点的收费标准是:每车使用1小时之内是免费的,超过1小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车(各租一车一次).设甲、乙不超过两小时还车的概率分别为$\frac{1}{4}$,$\frac{1}{2}$;1小时以上且不超过2小时还车的概率分别为$\frac{1}{2}$,$\frac{1}{4}$;两人租车时间都不会超过3小时.
(Ⅰ)求甲乙两人所付的租车费用相同的概率;
(Ⅱ)设甲乙两人所付租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=2(a-1)ln(ex-1)+ex,g(x)=(4a-2)x,其中a为常数(a>$\frac{1}{2}$),f′(x)为函数f(x)的导函数.
(Ⅰ)当a=$\frac{3}{2}$时,证明f′(x)≥4;
(Ⅱ)当a=$\frac{3}{2}$时,x0满足f(x0)=4x0,证明:当x>x0时,f(x)>4x;
(Ⅲ)设x1,x2分别是函数h(x)=f(x)-g(x)的极大值点和极小值点,且x2-x1>ln2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,x2+x+1>0”
B.命题“若x2-3x+2=0,则x=1或x=2”的否命题是:“若x2-3x+2=0,则x≠1或x≠2”
C.直线l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要条件是$a=\frac{1}{2}$
D.命题“若x=y,则sinx=siny”的逆否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知雨数f(x)=x2-x,g(x)=a1nx(a∈R),h(x)=kx+b(k,b∈R).
(1)若函数F(x)=f(x)-g(x)在区间(0,1)上存在两个极值点,求实数a的取值范围;
(2)设a=1,记[x]表示不超过实数x的最大整数,如[1]=1,[1,2]=1,[-1,2]=-2,A={k|f(x)+x+1-h(x)][h(x)-2eg(x)]≥0对x>0恒成立.若k1,k2∈A,求[k2-k1]的最大值数据是2(数据:ln2≈0.7.ln5=1.6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)是R上的以3为周期的奇函数,且f(2)=0,则f(x)=0在[0,6]内解的个数为9.

查看答案和解析>>

同步练习册答案