精英家教网 > 高中数学 > 题目详情
4.椭圆$\frac{{x}^{2}}{45}+\frac{{y}^{2}}{{b}^{2}}$=1(b>0)焦点分别是F1和F2,过原点O作直线与椭圆相交于A,B两点,△ABF2面积最大值为18,则椭圆短轴长(  )
A.6B.12C.18D.4$\sqrt{3}$

分析 设直线AB的方程为my=x,与椭圆方程联立解得:y2=$\frac{45{b}^{2}}{{b}^{2}{m}^{2}+45}$,x2=$\frac{45{m}^{2}{b}^{2}}{{b}^{2}{m}^{2}+45}$.可得|AB|=2$\sqrt{{x}^{2}+{y}^{2}}$,点F2(c,0)到直线AB的距离d=$\frac{c}{\sqrt{1+{m}^{2}}}$.可得△ABF2面积S=$\frac{1}{2}$|AB|d,即可得出.

解答 解:设直线AB的方程为my=x,联立$\left\{\begin{array}{l}{my=x}\\{\frac{{x}^{2}}{45}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,解得:y2=$\frac{45{b}^{2}}{{b}^{2}{m}^{2}+45}$,x2=$\frac{45{m}^{2}{b}^{2}}{{b}^{2}{m}^{2}+45}$.
∴|AB|=2$\sqrt{{x}^{2}+{y}^{2}}$=$\frac{6b\sqrt{5(1+{m}^{2})}}{\sqrt{{b}^{2}{m}^{2}+45}}$,
点F2(c,0)到直线AB的距离d=$\frac{c}{\sqrt{1+{m}^{2}}}$.
∴△ABF2面积S=$\frac{1}{2}$|AB|d=$\frac{1}{2}$×$\frac{6b\sqrt{5(1+{m}^{2})}}{\sqrt{{b}^{2}{m}^{2}+45}}$×$\frac{c}{\sqrt{1+{m}^{2}}}$=$\frac{3\sqrt{5}bc}{\sqrt{{b}^{2}{m}^{2}+45}}$≤bc,当且仅当m=0时取等号.
∴bc=18,
∴b2(45-b2)=324,解得b2=36,b=6.
∴椭圆短轴长=12.
故选:B.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、点到直线的距离公式、三角形面积计算公式、函数的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在边长为1的等边三角形ABC中,设$\overrightarrow{BC}$=2$\overrightarrow{BD}$,$\overrightarrow{CA}$=3$\overrightarrow{CE}$,
(1)用向量$\overrightarrow{AB}$,$\overrightarrow{AC}$表示向量$\overrightarrow{AD}$和$\overrightarrow{BE}$,并求$\overrightarrow{AD}$•$\overrightarrow{BE}$;
(2)求$\overrightarrow{AD}$在$\overrightarrow{BE}$方向上的射影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法:
①独立性检验,适用于检查两个变量彼此相关或相互独立的假设检验;
②设有一个回归方程$\widehat{y}$=3-5x,变量x增加一个单位时,y平均增加5个单位;
③相关系数r越接近1,说明模型的拟和效果越好;
其中错误的个数是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某人进行射击,每次中靶的概率均为0.6,现规定:若中靶就停止射击;若没中靶,则继续射击.如果只有4发子弹,则射击停止后剩余子弹数ξ的数学期望为2.376.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若tan($\frac{π}{4}$+α)=-2,则$\frac{sin2α}{{{{cos}^2}α}}$=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算0.25×(-$\frac{1}{2}$)-4-4÷($\sqrt{5}$-1)0-($\frac{1}{16}$)${\;}^{-\frac{1}{2}}$=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对棱柱而言,下列说法正确的序号是①③.
①有两个平面互相平行,其余各面都是平行四边形.
②所有的棱长都相等.
③棱柱中至少有2个面的形状完全相同.
④相邻两个面的交线叫做侧棱.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f($\frac{1-x}{1+x}$)=x,求f(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求满足下列条件的双曲线的标准方程:
(1)与双曲线$\frac{x^2}{16}$-$\frac{y^2}{4}$=1有公共焦点,且过点(3$\sqrt{2}$,2);
(2)渐近线方程为2x±3y=0,顶点在y轴上,且焦距为2$\sqrt{13}$.

查看答案和解析>>

同步练习册答案