精英家教网 > 高中数学 > 题目详情
13.已知函数f($\frac{1-x}{1+x}$)=x,求f(2)的值.

分析 利用函数的解析式求解函数值即可.

解答 解:函数f($\frac{1-x}{1+x}$)=x,
f(2)=f($\frac{1-(-\frac{1}{3})}{1+(-\frac{1}{3})}$)=-$\frac{1}{3}$.
故答案为:-$\frac{1}{3}$.

点评 本题考查函数的解析式的求法,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆的离心率$\frac{{\sqrt{5}}}{5}$,左焦点在直线2x-y+2=0上.
(1)求椭圆方程;
(2)若AB是过椭圆的一个焦点F的弦,AB的倾斜角为$\frac{π}{4}$,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{{x}^{2}}{45}+\frac{{y}^{2}}{{b}^{2}}$=1(b>0)焦点分别是F1和F2,过原点O作直线与椭圆相交于A,B两点,△ABF2面积最大值为18,则椭圆短轴长(  )
A.6B.12C.18D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知cosθ=$\frac{1}{3}$tan(-$\frac{π}{4}$),则sin($\frac{π}{2}$-θ)等于(  )
A.$\frac{{\sqrt{2}}}{3}$B.-$\frac{1}{3}$C.$\frac{1}{3}$D.$±\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有4对夫妻进行一种游戏,每个女士送一件礼物给某个男士,规定任何士都不能收自己妻子的礼物,且每个男士只能收一件礼物.则不同的送礼方式共有(  )种.
A.10B.24C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等比数列{an}中a1=512,公比q=-$\frac{1}{2}$,记Πn=a1×a2×…×an.(即Πn表示数列{an}的前n项之积),Π8,Π9,Π10,Π11中值为正数的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合M={(x,y)|y=$\sqrt{16-{x}^{2}}$,y≠0},N={(x,y)|y=x+a},若中M∩N有两个元素,则实数a的取值范围为(4,4$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知随机变量X~B(10,0.6),则E(X)与D(X)分别为(  )
A.2.4   4B.6    2.4C.4    2.4D.6    4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若集合M={{x|$\frac{2x-1}{x+2}$≤0}},N={x|$\frac{2x-1}{x+1}$≥0},则M∩N=M∩N=(-2,-1)∪{$\frac{1}{2}$}.

查看答案和解析>>

同步练习册答案