精英家教网 > 高中数学 > 题目详情
18.在等比数列{an}中a1=512,公比q=-$\frac{1}{2}$,记Πn=a1×a2×…×an.(即Πn表示数列{an}的前n项之积),Π8,Π9,Π10,Π11中值为正数的个数是2.

分析 等比数列{an}中a1>0,公比q<0,故奇数项为正数,偶数项为负数,利用新定义,即可得到结论.

解答 解:等比数列{an}中a1>0,公比q<0,故奇数项为正数,偶数项为负数.
∴Π11<0,Π10<0,Π9>0,Π8>0.
故答案是:2.

点评 本题考查等比数列,考查新定义,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在底面为菱形的四棱锥P-ABCD中,PA⊥平面ABCD,E为PD的中点,AB=2,∠ABC=$\frac{π}{3}$.
(1)求证:PB∥平面AEC;
(2)若三棱锥P-AEC的体积为1,求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算0.25×(-$\frac{1}{2}$)-4-4÷($\sqrt{5}$-1)0-($\frac{1}{16}$)${\;}^{-\frac{1}{2}}$=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点O为坐标原点,点A,B,C不共线,且$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),λ∈R,则点P的轨迹是∠BAC的角平分线所在直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f($\frac{1-x}{1+x}$)=x,求f(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集U=R,若集合A={x∈N||x-2|<3},B={x|y=lg(9-x2)},则A∩∁RB(  )
A.{x|-1<x<3}B.{x|3≤x<5}C.{0,1,2}D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD的中点.
(Ⅰ)求证:直线AF∥平面PEC;
(Ⅱ)求三棱锥P-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lg(ax2+2x+1),若f(x)的定义域是R,求实数a的取值范围及f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2lnx-x2+ax(a∈R).
(Ⅰ)当a=0时,求f(x)的单调区间;
(Ⅱ)若函数g(x)=f(x)-ax+m在$[\frac{1}{e},\;\;e]$上有两个零点,求实数m的取值范围;
(Ⅲ)若函数f(x)的图象与x轴有两个不同的交点A(x1,0),B(x2,0),且0<x1<x2,求证:$f'(\frac{{{x_1}+{x_2}}}{2})<0$(其中f′(x)是f(x)的导函数)

查看答案和解析>>

同步练习册答案