分析 本题考查的是函数的图象与性质问题.在解答时,由于函数f(x)的定义域是R,所以ax2+2x+1>0对一切x∈R成立.解此恒成立问题即可获得实数a的取值范围,再结合二次函数最值的知识易得函数f(x)的值域.
解答 解:因为f(x)的定义域为R,所以ax2+2x+1>0对一切x∈R成立.
由此得 $\left\{\begin{array}{l}{a>0}\\{△=4-4a<0}\end{array}\right.$,解得a>1.
又因为ax2+2x+1=a(x+$\frac{1}{a}$)2+1-$\frac{1}{a}$>0,
所以f(x)=lg(ax2+2x+1)≥lg(1-$\frac{1}{a}$),
所以实数a的取值范围是(1,+∞),
f(x)的值域是[lg(1-$\frac{1}{a}$),+∞).
点评 本题考查的是函数的图象与性质问题.在解答的过程当中充分体现了恒成立的思想、问题转化的思想以及数形结合的思想.值得同学们体会和反思.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 不充分不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com