精英家教网 > 高中数学 > 题目详情
设全集为实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.
(1)当a=-4时,求A∩B,(∁RA)∪B;
(2)若(∁RA)∩B=B,求实数a的取值范围.
考点:交、并、补集的混合运算
专题:不等式的解法及应用,集合
分析:(1)当a=-4时,解一元二次不等式化简A和B,再进行集合的运算;
(2)由(∁RA)∩B=B,可得 B⊆(∁RA).求得(∁RA)和 B,考查集合的端点值的大小关系可得
-a
1
2
,从而求得负数a的取值范围.
解答: 解:(1)当a=-4时,A={x|2x2-7x+3≤0}={x|
1
2
≤x≤3},
B={x|x2+a<0}={x|x2<4}={x|-2<x<2},
∴A∩B={x|
1
2
≤x<2},∁RA={x|x<
1
2
或x>3},∴(∁RA)∪B={x|x<2,或x>3}.
(2)若(∁RA)∩B=B,则 B⊆(∁RA).又(∁RA)={x|x<
1
2
,或 x>3},且a<0,
∴B={x|-
-a
<x<
a
},
-a
1
2
,解得-
1
4
<a<0,即负数a的取值范围为(-
1
4
,0).
点评:本题主要考查一元二次不等式的解法,两个集合的交集、并集、补集的运.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:x2+y2=0(x,y∈R),q:x≠0或y≠0,则﹁p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数,且
a
1+i
+
1+2i
2
是实数,则a=(  )
A、
1
2
B、-1
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,且对任意n∈N*,都有an2=2Sn-an,其中Sn为数列{an}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=3n+(-1)n-1λ•2an(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)sin(x+
π
4
).
(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)求函数f(x)在区间[-
π
12
π
2
]上的值域;
(Ⅲ) 令g(x)=f(x-
π
6
),判断函数g(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36
根据上述数据得到样本的频率分布表如下:
分组频数频率
[25,30]30.12
(30,35]50.20
(35,40]80.32
(40,45]n1f1
(45,50]n2f2
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)求在这25名工人中任意抽取2人,且恰有1人的日加工零件数落在区间(30,35]的概率;
(3)求在该厂大量的工人中任取4人,至多有1人的日加工零件数落在区间(30,35]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
1
2
ax2-(a+2)x+b(a,b∈R)在[-1,1]上是减函数.
(1)求实数a的取值范围;
(2)设
1
2
<a<1,若对任意实数u、v∈[a-1,a],不等式|f(u)-f(v)|≤
29
12
恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a10=4,a20=-16.
(Ⅰ)求通项公式an
(Ⅱ)求数列{an}的前n项和Sn的最大值及相应n的值;
(Ⅲ)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已设函数f(x)=
ex
x2+ax+a
,其中a为实数.
(Ⅰ)当a=0时,若直线l过(2,0)与f(x)相切,求直线l的方程;
(Ⅱ)若f(x)的定义域为R,求a的取值范围;
(Ⅲ)当f(x)的定义域为R时,求f(x)的单调减区间.

查看答案和解析>>

同步练习册答案