精英家教网 > 高中数学 > 题目详情
随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36
根据上述数据得到样本的频率分布表如下:
分组频数频率
[25,30]30.12
(30,35]50.20
(35,40]80.32
(40,45]n1f1
(45,50]n2f2
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)求在这25名工人中任意抽取2人,且恰有1人的日加工零件数落在区间(30,35]的概率;
(3)求在该厂大量的工人中任取4人,至多有1人的日加工零件数落在区间(30,35]的概率.
考点:列举法计算基本事件数及事件发生的概率,频率分布直方图
专题:计算题,概率与统计
分析:(1)由题中给出的数据求出n1,n2,f1和f2的值;(2)利用古典概型概率公式求解;(3)利用古典概型概率公式求解.
解答: 解:(1)n1=7,n2=2,f1=0.28,f2=0.08.
(2)25名工人中,日加工零件数落在区间(30,35]的人数为5人,设在这25名工人中任意抽取2人,且恰有1人的日加工零件数落在区间(30,35]的事件为A,则P(A)=
C
1
5
C
1
20
C
2
25
=
1
3

(3)由(1)知,任取一人,日加工零件数落在区间(30,35]的概率为
1
5

设该厂任取4人,没有人日加工零件数落在区间(30,35]的事件为B,恰有1人人日加工零件数落在区间(30,35]的事件为C,
P(B)=(1-
1
5
)4=(
4
5
)4=
256
625
P(C)
=C
1
4
1
5
•(
4
5
)3=
256
625

故至多有1人的日加工零件数落在区间(30,35]的概率为P(B)+P(C)=
256
625
+
256
625
=
512
625

答:在该厂任取4人,至多有1人的日加工零件数落在区间(30,35]的概率为
512
625
点评:本题考查了频率分布表的作法及古典概型的概率公式应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
1
3
x3-x2
-3x+1的单调递减区间为(  )
A、(-1,3)
B、(-3,1)
C、(-∞,-1)∪(3,+∞)
D、(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

sin(-240°)的值为(  )
A、-
1
2
B、
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+y=a与圆x2+y2=3交于A、B两点,O为原点,若
OA
OB
=2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.
(1)当a=-4时,求A∩B,(∁RA)∪B;
(2)若(∁RA)∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-2ax2+bx+c.
(Ⅰ)当c=0时,f(x)的图象在点(1,3)处的切线平行于直线y=x+2,求a,b的值;
(Ⅱ)当f(x)无极值时,a,b要满足什么条件?
(Ⅲ)当a=
3
2
,b=-9时,f(x)在点A,B处有极值,O为坐标原点,若A,B,O三点共线,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=(a+1)lnx+ax2+1,
(1)a=0时,若x∈[1,+∞)有f(x)-m≥0,求实数m的取值范围;
(2)讨论函数f(x)的单调性;
(3)设a≤-2,证明:对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+x2-ax,a∈R.
(Ⅰ)若a=3,求f(x)的单调区间;
(Ⅱ)若f(x)有两个极值点x1、x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k,问是否存在a,使k=
2
a
-
a
2
?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式:
(Ⅰ)|2x+1|-2|x-1|>0;              
(Ⅱ)||x-2|-1|≤1.

查看答案和解析>>

同步练习册答案