已知如图,平行四边形中,,,,正方形所在平面与平面垂直,分别是的中点。
⑴求证:平面;
⑵求平面与平面所成的二面角的正弦值。
(1)详见解析;(2).
解析试题分析:(1)证明线面平行,一般可考虑线面平行的判定定理,构造面外线平行于面内线,其手段一般是构造平行四边形,或构造三角形中位线(特别是有中点时),由此本题即要证明的中点也是的中点,于是只要证明四边形是平行四边形,此较为容易;(2)求二面角一般分为三个步骤:作出二面角的平面角,证明此角是二面角的平面角,利用解三角形知识求出二面角的三角函数值,也可建立空间直角坐标系,求出两平面的法向量的夹角,根进一步判断二面角的大小.
试题解析:⑴证明;,,且,
四边形是平行四边形,为的中点,又是的中点
,平面平面,
平面 4分
⑵(解法1)过点作于,易知为中点,连结.
易知,平面,,
是平面与平面所成的二面角的平面角. 8分
,
,
即平面与平面所成的二面角的正弦值为. 12分
(解法2)以点为坐标原点,所在的直线分别为轴,轴,轴建立空间直角坐标系,则, 6分
,
设平面的法向量由,得,
令,又平面的法向量为, 9分
设平面与平面所成的二面角为,则,
即平面与平面所成的二面角的正弦值为. 12分
考点:空间中线面的位置关系,二面角.
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.
(Ⅰ)证明:AD⊥C1E;
(Ⅱ)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上动点,F是AB中点,AC = 1,BC = 2,AA1 = 4.
(Ⅰ)当E是棱CC1中点时,求证:CF∥平面AEB1;
(Ⅱ)在棱CC1上是否存在点E,使得二面角A—EB1—B的余弦值是,若存在,求CE的长,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,AC是圆O的直径,点B在圆O上,,交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1,
(1)证明;
(2)(文科)求三棱锥的体积
(理科)求平面和平面所成的锐二面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直角梯形,是边上的中点(如图甲),,,,将沿折到的位置,使,点在上,且(如图乙)
(Ⅰ)求证:平面ABCD.
(Ⅱ)求二面角E?AC?D的余弦值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com