精英家教网 > 高中数学 > 题目详情

四棱锥中,⊥底面,,,.

(Ⅰ)求证:⊥平面;
(Ⅱ)若侧棱上的点满足,求三棱锥的体积.

(Ⅰ)见解析;(Ⅱ).

解析试题分析:(Ⅰ)通过在平面PAC内证明PA和AC均与BD垂直,由线面垂直的判定定理得出结论;(Ⅱ)由割补法知,故先求.处理的关键是利用图形分割.
试题解析:(Ⅰ)证明:因为BC=CD,即为等腰三角形,又,故.
因为底面,所以,从而与平面内两条相交直线都垂直,
⊥平面.
(Ⅱ)解:.
底面.
得三棱锥的高为,
故:

考点:1.直线与平面垂直的判定;2.几何体体积的求法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.

(1)证明:AC⊥B1D;
(2)求直线B1C1与平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=

(I)若M为PA中点,求证:AC∥平面MDE;
(II)求直线PA与平面PBC所成角的正弦值;
(III)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面是正方形,,且分别是线段的中点.

(1)求证:平面
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知如图,平行四边形中,,正方形所在平面与平面垂直,分别是的中点。

⑴求证:平面
⑵求平面与平面所成的二面角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,四边形是菱形,,E为PB的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE, =45 ,O是BC的中点,AO= ,且BC=6,AD=AE=2CD=2 ,

(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,是边长为2的正三角形. 若平面,平面平面, ,且

(1)求证://平面;
(2)求证:平面平面.

查看答案和解析>>

同步练习册答案