如图,平面平面,是正方形,,且,、、分别是线段、、的中点.
(1)求证:平面;
(2)求异面直线、所成角的余弦值.
科目:高中数学 来源: 题型:解答题
如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明EF//平面A1CD;
(Ⅱ)证明平面A1CD⊥平面A1ABB1;
(Ⅲ)求直线BC与平面A1CD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,G为PD的中点,E是AB的中点.
(Ⅰ)求证:AG∥平面PEC;
(Ⅱ)求点G到平面PEC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E为PB上的点,且2BE=EP.
(1)证明:AC⊥DE;
(2)若PC=BC,求二面角E-AC一P的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com