精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,四边形是菱形,,E为PB的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.   

见详解

解析试题分析:
(Ⅰ)要证线面平行,需要找线线平行,根据线面平行的判定定理得证;(Ⅱ)要证面面垂直,需要线面垂直,根据面面垂直的判定定理得证;
试题解析:
证明:(Ⅰ)如图,设,连接EO,因为O,E分别

是BD,PB的中点,所以,          (4分)
,所以平面.
(6分)
(Ⅱ)连接PO,因为,所以,又四边形是菱形,
所以.                          (9分)
平面平面
所以平面,                        (11分)
平面,所以平面平面.           (12分)
考点:线面平行,面面垂直

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,D、E分别为、AD的中点,F为上的点,且

(I)证明:EF∥平面ABC;
(Ⅱ)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将棱长为的正方体截去一半(如图甲所示)得到如图乙所示的几何体,点分别是的中点.

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,G为PD的中点,E是AB的中点.

(Ⅰ)求证:AG∥平面PEC;  
(Ⅱ)求点G到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,⊥底面,,,.

(Ⅰ)求证:⊥平面;
(Ⅱ)若侧棱上的点满足,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,
 
(Ⅰ)求证:
(Ⅱ)若的中点,求与平面所成角的正切值  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E为PB上的点,且2BE=EP.

(1)证明:AC⊥DE;
(2)若PC=BC,求二面角E-AC一P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点的中点.

(1)求三棱锥的体积;
(2)证明:;
(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案