如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点,.
(1)求证:;
(2)求二面角的余弦值.
(1)详见解析;(2)
解析试题分析:(1)要证,需先证平面,由于平面易证,故有,又因为,则证得平面;(2)综合法是先找到二面角的一个平面角,不过必须根据平面角的定义证明,然后在中解出的三角函数值.
试题解析:(1)连接,由知,点为的中点,
又∵为圆的直径,∴,
由知,,
∴为等边三角形,从而. 3分
∵点在圆所在平面上的正投影为点,
∴平面,又平面,
∴, 5分
由得,平面,
又平面,
∴. 6分
(2)(综合法)过点作,垂足为,连接. 7分
由(1)知平面,又平面,
∴,又,
∴平面,又平面,∴, 9分
∴为二面角的平面角. 10分
由(Ⅰ)可知,,
∴,则,
∴在中,,
∴,即二面角的余弦值为. 14分
考点:1、线线垂直和线面垂直的证明,2、二面角的计算.
科目:高中数学 来源: 题型:解答题
如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.
(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=,AE、CF都与平面ABCD垂直,AE=1,CF=2.
(I)求二面角B-AF-D的大小;
(II)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com