精英家教网 > 高中数学 > 题目详情

如图,在几何体中,平面是等腰直角三角形,,且,点的中点.

(Ⅰ)求证:平面
(Ⅱ)求与平面所成角的正弦值.

(Ⅰ)详见解析;(Ⅱ).

解析试题分析:(Ⅰ)证法一是取的中点,构造四边形,并证明四边形为平行四边形,得到,从而证明平面;证法二是取的中点,构造平面,通过证明平面平面,并利用平面与平面平行的性质来证明平面;(Ⅱ)直接利用空间向量法求直线与平面所成角的正弦值.
试题解析:解法一:(Ⅰ)取的中点,连结

,且,     2分
,∴,所以四边形是平行四边形,
,                    5分
又因为平面平面,所以平面.           6分
(Ⅱ)依题得,以点为原点,所在的直线分别为轴,建立如图的空间直角坐标系,


所以
设平面的一个法向量为,则
,得,.       10分
又设与平面所成的角为

与平面所成角的正弦值为.             13分
解法二:(Ⅰ)取的中点,连结


又因为平面平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点的中点.

(1)求三棱锥的体积;
(2)证明:;
(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知:菱形所在平面与直角梯形所在平面互相垂直,分别是线段的中点.

(1)求证:平面平面;
(2)点在直线上,且//平面,求平面与平面所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直角梯形中,是边长为2的等边三角形,.沿折起,使处,且;然后再将沿折起,使处,且面在面的同侧.

(Ⅰ) 求证:平面
(Ⅱ) 求平面与平面所构成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,上的高,沿折起,使.
(Ⅰ)证明:平面⊥平面
(Ⅱ)若,求三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,,设顶点A在底面上的射影为R.
(Ⅰ)求证:
(Ⅱ)设点在棱上,且,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面四边形的4个顶点都在球的表面上,为球的直径,为球面上一点,且平面 ,点的中点.
(1) 证明:平面平面
(2) 求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。

查看答案和解析>>

同步练习册答案