如图,在几何体中,平面,,是等腰直角三角形,,且,点是的中点.
(Ⅰ)求证:平面;
(Ⅱ)求与平面所成角的正弦值.
(Ⅰ)详见解析;(Ⅱ).
解析试题分析:(Ⅰ)证法一是取的中点,构造四边形,并证明四边形为平行四边形,得到,从而证明平面;证法二是取的中点,构造平面,通过证明平面平面,并利用平面与平面平行的性质来证明平面;(Ⅱ)直接利用空间向量法求直线与平面所成角的正弦值.
试题解析:解法一:(Ⅰ)取的中点,连结,
则,且, 2分
又,∴且,所以四边形是平行四边形,
则, 5分
又因为平面,平面,所以平面. 6分
(Ⅱ)依题得,以点为原点,所在的直线分别为轴,建立如图的空间直角坐标系,
则,,,,,,
所以,.
设平面的一个法向量为,则即,
取,得,. 10分
又设与平面所成的角为,,
则,
故与平面所成角的正弦值为. 13分
解法二:(Ⅰ)取的中点,连结,
则,
又因为平面,平面,平面
科目:高中数学 来源: 题型:解答题
如图已知:菱形所在平面与直角梯形所在平面互相垂直,,点分别是线段的中点.
(1)求证:平面平面;
(2)点在直线上,且//平面,求平面与平面所成角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直角梯形中,是边长为2的等边三角形,.沿将折起,使至处,且;然后再将沿折起,使至处,且面面,和在面的同侧.
(Ⅰ) 求证:平面;
(Ⅱ) 求平面与平面所构成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面四边形的4个顶点都在球的表面上,为球的直径,为球面上一点,且平面 ,,点为的中点.
(1) 证明:平面平面;
(2) 求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.
(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com